美文日 - 美文欣赏阅读,用心与您分享。

首页范文写作正文

圆柱的表面积教案

教案2024-08-05 09:13:43

  作为一名教师,就不得不需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么写教案需要注意哪些问题呢?下面是小编为大家整理的圆柱的表面积教案,仅供参考,大家一起来看看吧。

圆柱的表面积教案1

  教学目标:

  1.理解圆柱表面积的含义。

  2.掌握圆柱的表面积的计算方法,会正确地计算圆柱的表面积。

  3.能灵活运用求表面积的有关知识解决一些简单的实际问题。

  教学重点:理解求圆柱的'表面积的计算方法并能正确计算。

  教学难点:灵活运用表面积的有关知识解决实际问题。

  教学方法:探索发现,归纳总结,实际应用

  学法指导:小组合作,探究发现

  教学准备:

  课件

  圆柱模型

  教学过程:

  一、激情导思(5分)

  1、填空

  (1)圆柱有()个底面,它们是 ();有()侧 面,是(),有()条高,这些高都()。

  (2)圆柱的侧面展开是( ),长方形的长等于(),宽等于()。

  (3)圆柱的侧面积=

  2、求下面各圆柱的侧面积。(只列式,不计算)

  ①c=9.42厘米,h=5厘米。

  ②d=8米,h=3米。

  ③r=2分米,h=6分米。

  二、探究新知(15分)

  小组交流:

  1、圆柱的表面积怎么计算?

  2、根据实际情况圆柱形烟囱,水桶,油桶的表面积怎么计算?

  3、归纳总结:

  (1)s表面积=s侧面积+2s底面积

  (2)烟囱表面积=侧面积

  (3)水桶表面积=侧面积+一个底面积

  (4)油桶表面积=侧面积+两个底面积

  4、出示例2:一个圆柱形油桶高6分米,底面直径4分米,做这个油桶至少需要多少平方分米的铁皮?

  (1)学生独立尝试解决

  (2)全班交流:

  油桶的侧面积:3.14×4×6=75.36(平方分米)

  油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)

  油桶的表面积:75.36+25.12=100.48(平方分米)

  答:做这个油桶至少需要100.48平方分米的铁皮。

  三、课内练习:

  1、数学书33页第2题求表面积并填表

  2、计算下现各圆柱的表面积。(图中单位:厘米)

  四、拓展应用

  3、学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要多少平方米的铁皮?

  4、修建一个圆柱形沼气池,底面直径是4米,深是2米。在池的四壁与底面抹上水泥,抹水泥部分的面积是多少平方米?

  5、数学书33页第6题

  四:总结:

  1、圆柱表面积的有关知识,在实际应用时要注意什么呢?

  应用圆柱的表面积有关知识解决实际问题时,要具体情况具体分析,根据实际需要来计算各部分面积,必须灵活掌握。另外,在生产中备料多少,一般采用进一法,目的就是为了保证原材料够用。

  五、布置作业(8分)

  数学书33页第3、4、5题

  板书设计: 圆柱的表面积

  例2:油桶的侧面积:3.14×4×6=75.36(平方分米)

  油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)

  油桶的表面积:75.36+25.12=100.48(平方分米)

  答:做这个油桶至少需要100.48平方分米的铁皮。

圆柱的表面积教案2

  教学目标

  1.经历认识圆柱展开图和探索表面积计算方法的过程。

  2.认识圆柱展开图,掌握圆柱表面积的计算方法,会计算圆柱的表面积。

  3.积极参加数学活动,建立展开图与圆柱侧面、底面的联系,发展初步的空间观念。

  教学重点

  圆柱体表面积公式的推导。

  教学难点

  运用表面积公式计算实际图形的表面积。

  教具准备

  圆柱表面展开示意图。

  教学过程

  一、读题导入

  1.齐读课题。

  师:看到这个课题,你们想到了哪些与之相关的知识。

  生:长方体和正方体的表面积;圆柱的底面和侧面。

  2.复习相关知识

  (1)什么是长方体、正方体的表面积?它们是怎么计算的?

  二、探索新知

  1.课件出示圆柱,揭示圆柱的表面积公式

  师:根据刚才的讨论,你能说说应该要求出圆住的表面积,必须哪些条件吗?并说说理由。

  生:因为圆柱的表面有一个侧面和两个底面。所以用一个侧面积加上两个底面积。

  2.教学圆柱的表面积

  (1)师:(课件出示上堂课中圆柱的侧面展开图),上堂课,我们研究了圆柱的侧面展开图,以及圆柱侧面积的计算方法,今天我们来进一步讨论圆柱表面积的计算方法。

  (2)谁还记得圆柱侧面积的计算公式。

  学生:圆柱的侧面积=底面周长高

  (3)拿一个圆柱形的纸盒,指出它的侧面和两个底面。然后展开,使学生直观看到圆柱展开图是两个同样大的圆和一个长方形。

  (4)议一议:怎样求圆柱的表面积?学生讨论。

  学生:圆柱的表面积就是用圆柱的侧面积加上两个底面积。

  (4)教学例题:

  出示教材中圆柱示意图,让学生了解圆柱的高和半径,鼓励学生自己尝试计算。

  (5)交流学生计算的方法和结果。如果出现列综合算式的,要给予表扬。如果没有。提出兔博士的话,鼓励学生尝试,老师可进行必要的指导。

  三、练习

  试一试

  (1)提出试一试的`问题,让学生尝试计算。

  (2)交流计算的过程和结果。重点说说计算的过程和方法,注意本题中给出已知条件是圆柱的底直径。

  四、巩固

  练一练1:则由学生独立完成。

  练一练2:此题是一个半圆柱体,应该怎样理解它的表面积,学生充分发表意见后再让学生自己来完成。

  练一练3:先指导学生明确解决问题的思路,再自主解答。

  五、家庭作业

  自己找一个圆柱体的物体,来测量它的数据并计算出它的表面积。

圆柱的表面积教案3

  教学内容:P13-14页例3-例4,完成“做一做”及练习二的部分习题。

  教学目标:

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

  教学重点:掌握圆柱侧面积和表面积的计算方法。

  教学难点:运用所学的知识解决简单的实际问题。

  教学过程:

  一、复习

  1.指名学生说出圆柱的特征.

  2.怎样求圆柱体的侧面积?

  3.(只列式,不计算 )求下列圆柱的侧面积。

  (1)底面周长是3.8dm,高1.5dm。

  (2)底面直径20m,高12m。

  (3)底面半径6cm,高18cm。

  二、新课

  导入:我们以前掌握了长方体和正方体的表面积。那圆柱的表面积又该如何求呢?[板书课题]

  1. 理解圆柱表面积的含义.

  (1)圆柱的表面积指什么?让学生把自己制作的圆柱模型展开,观察一下,圆柱的'表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  (3)如何计算圆柱的表面积?表面积和侧面积有什么不同?

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  2.圆柱表面积的计算

  (1)计算圆柱体的表面积:教材14页做一做(强调作业格式要求:分三步,首先分别求出侧面积和底面积,最后求表面积)

  (2)底面直径6分米,高2分米。

  (3)底面周长12.56米,高3米。

  三.课堂作业:练习二第6题。

  家庭作业:练习二第14题求表面积部分。

圆柱的表面积教案4

  教学目标

  1.理解圆柱的侧面积和表面积的含义.

  2.掌握圆柱侧面积和表面积的计算方法.

  3.会正确计算圆柱的侧面积和表面积.

  教学重点

  理解求表面积、侧面积的计算方法,并能正确进行计算.

  教学难点

  能灵活运用表面积、侧面积的有关知识解决实际问题.

  教学过程

  一、复习准备

  (一)口答下列各题(只列式不计算).

  1.圆的半径是5厘米,周长是多少?面积是多少?

  2.圆的直径是3分米,周长是多少?面积是多少?

  (二)长方形的面积计算公式是什么?

  (三)回忆圆柱体的特征.

  二、探究新知

  (一)圆柱的侧面积.

  1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.

  2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高.

  (二)教学例1.

  1.出示例1

  例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的'侧面积.(得数保留两位小数)

  2.学生独立解答

  教师板书: 3.14×0.5×1.8

  =1.75×l.8

  ≈2.83(平方米)

  答:它的侧面积约是2.83平方米.

  3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.

  (三).

  1.教师说明:圆柱的侧面积加上两个底面积就是.

  2.比较圆柱体的表面积和侧面积的区别.

  是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积.

  (四)教学例2.

  1.出示例2

  例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

  2.学生独立解答

  侧面积:2×3.14×5×15=471(平方厘米)

  底面积:3.14× =78.5(平方厘米)

  表面积:471+78.5×2=628(平方厘米)

  答:它的表面积是628平方厘米.

  3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.

  (五)教学例3.

  1.出示例3

  例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)

  2.教师提问:解答这道题应注意什么?

  这道题是求做这个水桶要用铁皮多少平方厘米.实际上是求这个圆柱形水桶的表面积.题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积.

  3.学生解答,教师板书.

  水桶的侧面积:3.14×20×24=1507.2(平方厘米)

  水桶的底面积:3.14×

  =3.14×

  =3.14×100

  =314(平方厘米)

  需要铁皮:1507.2+314=1821.2≈1900(平方厘米)

  答:做这个水桶要用1900平方厘米.

  4.教师说明:这里不能用“四舍五入”法取近似值.在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.

  5.“四舍五入”法与“进一法”有什么不同.

  (1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去.

  (2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.

  三、课堂小结

  这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题.在实际应用时要注意什么呢?

  归纳:,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握.如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积.另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用.

  四、巩固练习

  (一)求出下面各圆柱的侧面积.

  1.底面周长是1.6米,高是0.7米

  2.底面半径是3.2分米,高是5分米

  (二)计算下面各.(单位:厘米)

  (三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积.(有盖和无盖两种)

  五、课后作业

  (一)砌一个圆柱形的沼气池,底面直径是3米,深是2米.在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?

  (二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?

  六、板书设计

  探究活动

  面包的截面

  活动目的

  培养学生的观察能力和操作能力,发展学生的空间观念.

  活动题目

  有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?

  活动过程

  1、学生分组讨论.

  2、利用橡皮泥捏一个圆柱体,进行实验,验证结论.

  3、画出截面图,表示结论,发展空间观念.

  参考答案

  1、沿水平方向横切一刀,截面是圆形.(如图1)

  2、沿垂直方向纵切一刀,截面是一个长方形.(如图2)

  3、沿侧面斜切一刀,会形成大小不一的椭圆形.(如图3)

  4、从顶面向侧面斜切一刀,会形成椭圆的一部分.(如图4)

  5、从上底面斜切一刀到下底面,会形成椭圆的一部分.(如图5)

  (图1) (图2) (图3) (图4) (图5)

圆柱的表面积教案5

  一、教学目标

  【知识与技能】

  结合教学用具和学生已有认知,探索圆柱表面积的计算方法,能正确计算圆柱的表面积和侧面积,并根据公式解决实际问题。

  【过程与方法】

  通过想象、操作等活动,知道圆柱侧面展开图是长方形的同时,熟记表面积的计算公式,发展空间观念。

  【情感态度与价值观】

  能根据具体情境,借助圆柱表面积的计算方法解决生活中的一些实际问题,体会数学与实际生活的密切联系。

  二、教学重难点

  【教学重点】

  圆柱表面积的计算方法以及在生活中的应用。

  【教学难点】

  圆柱表面积的计算方法在生活中的应用。

  三、教学过程

  (一)导入新课

  师:在前面的学习中,我们已经认识了圆柱,并且知道了生活中有很多物体的形状是圆柱。大家来看,这个圆柱形状的物体。它的制作需要一定的材料(出示一个茶叶盒)请同学们想一想,要“制作这样一个茶叶盒需要多少材料”,实际上是在求圆柱的什么?(边演示边讲解)

  (二)生成原理

  (1)介绍圆柱的侧面积、底面积和表面积

  师生活动:要求“制作茶叶盒所需的材料”实际上是求圆柱的侧面积和两个底面面积(边演示边说),我们把圆柱侧面的`面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。

  (2)创疑激趣

  师:我们知道,圆柱的底面是圆,我们已经掌握了圆的面积,可是圆柱的侧面是一个曲面,我们又该怎么求它的面积呢?

  (3)小组合作交流

  师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形来求侧面积?(小组合作探究结合上节课所学的知识和圆柱的特征研究)ppt展示

  小组汇报:圆柱的侧面积就等于长方形的面积,长方形的长等于圆柱底面的周长,宽等于圆柱的高,因此圆柱的侧面积也就等于圆柱的底面周长乘以高。

  (4)学会计算圆柱的表面积

  师:我们已经会求圆柱的侧面积,那圆柱的表面积呢?(让学生回答,教师板书求表面积的算式,并板书课题“圆柱的表面积”)

  师生活动:用字母表示侧面积和底面积的话,该如何表示圆柱的表面积。

  (三)深化原理

  圆柱的表面积是圆柱的侧面积加上两个底面面积之和。如果圆柱只有一个底面,它的表面积则是侧面积和一个底面积之和。如水桶。

  (四)应用原理

  如果给圆柱形笔筒侧面裹一层彩纸,笔筒底面半径是5cm,高是10cm。那么想想得准备多少彩纸?

  (五)课堂小结

  师:今天收获了哪些知识?能不能用今天所学的知识制作一个常用的学习用品?能否设计一个笔筒?在设计过程中需要解决哪些问题?

  生:测量、确定笔筒的大小

  师:如何确定?

  生:确定底面半径,还有笔筒的高

  师:课后利用所学知识给自己设计一个笔筒,并做一下“做一做”。

  四、板书设计

圆柱的表面积教案6

  一、检查复习,引入新课

  1、复习圆柱体的特征

  师:圆柱是由平面和曲面围成的立体图形。圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?(学生回答后课件动画闪烁各部分名称)

  2、拿出圆柱体茶叶罐:想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)请大家猜一猜圆柱侧面是怎样做成的呢?

  引入:今天这节课,我们就一起来学习圆柱的表面积。

  【设计意图:通过复习,再次让学生明白圆柱的特征,同时创设“制作圆柱体茶叶罐怎样下料的问题”,激发学生的求知欲,也体现出学数学的价值。】

  二、引导探究,学习新知

  (一)教学圆柱表面积的意义。

  设疑:长方体6个面的总面积,叫做它的表面积。什么是圆柱体的表面积呢?(学生回答,教师板书:侧面积+底面积×2 =表面积)

  要求圆柱的表面积,首先应该计算出它的底面积和侧面积。

  (二)测量直径,计算圆柱的底面积。

  圆柱的底面是圆形,怎样计算它的面积吗?(S=∏r2)需要知道什么条件? 现场测量茶叶桶的底面直径。(注意方法指导:量出底面最长的线段即直径的长度。课件动画展示测量方法)

  学生口答算式和结果

  (三)教学圆柱体侧面积的计算

  1、引导探究圆柱体侧面积的计算方法。

  (1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?

  想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?

  (2)学生动手操作。(剪圆柱形纸筒)

  (3)汇报交流研究结果。(随着学生回答课件展示)

  百度图片:

  小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

  2、计算圆柱体茶叶罐的侧面包装纸的面积

  师:(课件呈现圆柱茶叶罐侧面包装图片)

  求圆柱体茶叶罐的侧面包装纸的面积实际是求圆柱的什么?(侧面积) 再次测量茶叶桶的高,并把结果记录下来,独立计算。

  (四)教学求圆柱的表面积。

  1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

  2、学生根据数据进行计算。

  3、汇报计算方法及结果,强调单位的使用

  小结:求茶叶桶的表面积是为工人师傅下材料提供了基本数据,但是在准备材料时往往会比计算结果多一些,因为在具体操作时,尤其是在剪圆的时候会产生浪费现象,这是不可避免的。

  【设计意图:教师抓住圆柱表面积中的侧面积是学生学习的难点这一问题,通过四个层次的学习,有详有略,凸显本节课的重难点。教师让学生动手操作,经历圆柱侧面展开的过程,通过小组交流讨论,推导出了圆柱侧面面积的计算方法,有效的培养了学生的动手操作能力,适时渗透“转化”思想,学生的空间观念和思维能力得到锻炼。】

  三、解决问题,强化认知。

  (一)(多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图)引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?通过回答让学生感知圆柱表面积在实际生活中应用的意义。

  (二)根据要求练习。

  1、一个圆柱形油桶,底面直径是8分米,高是12分米,它的`占地面积有多大?(只列式不计算)

  2、一台压路机的滚筒宽1.2米,直径为8分米。如果它滚动1周,压路的面积是多少平方米?(只列式不计算)(课件呈现压路机压路情景)

  3、做一个无盖的圆柱形铁皮水桶,高是5分米。底面直径4分米,至少需要多大面积的铁皮?(结果保留整数)

  根据学生的计算结果,教学用“进一法”取近似值。

  小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。

  (三)操作练习。

  根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。 讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?

  测量:借助工具测量出需要的数据(取整厘米数),并做好记录。

  计算:根据量得的数据,列出相应的算式并算出结果。

  【设计意图:数学源于生活,又用于生活。教师设计不同层次的练习题,一方面是检查学生对知识的掌握情况,另一方面也是培养学生运用知识解决实际问题的能力。】

  四、课堂回顾,总结提升

  1、本节课你有何收获?

  2、教师小结:在解答实际问题前一定要先进行分析,看它们求的是哪部分面积,再选择解答的方法。求用料多少,一般采用进一法取近似值,以保证原材料够用。

  【设计意图:不仅对本节课的知识要点进行回顾整理,更重要的是提醒学生在解决问题时要具体情况具体分析。】

圆柱的表面积教案7

  教学目标

  1、使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确计算圆柱体侧面积和表面积。

  2、使学生在数学学习活动中获得成功的体验,建立自信心。

  教学重点

  表面积的计算。

  教学难点

  侧面积的含义与计算方法。

  教学关键利用教具,弄清侧面积与圆的关系。

  教具准备圆柱侧面展开教具。

  教学方法操作法。

  教学过程

  旧知铺垫1、口算。

  3.1434100.5670.820

  2、长方体表面积。12㎝

  (1)长方体的表面积指的是什么?8㎝

  (2)怎样计算长方体的表面积?20㎝

  探索新知1、揭示并板书课题。

  2、教学例3.

  (1)你们知道圆柱体的表面积指的是什么吗?

  (说一说、摸一摸)

  (2)你们想应该怎样计算圆柱体的.表面积?

  (学生说明、教师演示)

  板书结论:圆柱体的表面积=圆柱体的侧面积+2个底面的面积

  (3)圆柱体的底面积和侧面积会计算吗?

  (学生说明、教师演示)

  板书推导过程。

  3、尝试练习。

  (1)求侧面积。

  a、C=2.5dm,h=0.6dm。

  b、d=8cm,h=12cm。

  (2)求表面积。

  a、S底=40c㎡,S侧=25c㎡。

  b、r=2dm,h=5dm。

  4、课堂小结。

  巩固练习完成练习2的第5、6题。

  布置作业完成练习2的第7、8题。

圆柱的表面积教案8

  教学目标:圆柱表面积的,掌握圆柱表面积的计算方法,并能正确地计算圆柱的表面积。会解决简单的实际问题。

  教学重点:掌握表面积的计算方法

  教学难点:运用所学的知识解决简单的实际问题

  教具准备:圆柱的展开图

  教学过程:

  一、复习

  1、指名学生说出圆柱的特征。

  2、圆柱的侧面积=底面周长高

  3、计算下面各圆柱的.侧面积。

  (1)底面2.5周长米,高0.6米。

  (2)底面直径4厘米,高10厘米。

  (3)底面半径1.5分米,高8分米。

  4、提问:圆柱的侧面积加两个底面的面积就圆柱的什么?(表面积)

  二、教学表面积。

  那么,圆柱的表面积是什么?明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  板书:圆柱的表面积=圆柱侧面积+两个底面的面积

  1、教学例2。

  出示例2的题目:一个圆柱的高是4.5分米,底面半径是2分米,它的表面积是多少?

  (1)这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么?

  (2)我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数

  据标在图上。现在我们把这个圆柱展开。出示展开图,如下:

  2、小结:计算表面积时,一定要分步计算。先求什么,后求什么,再求什么。(提问)

  3、出示试一试:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

  (1)这道题已知什么?求什么?这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分?

  (2)要计算做这个水桶需要多少铁皮,应该分哪几步?

  教师行间巡视,注意察看最后的得数是否计算正确。

  (3)指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

  三、课堂小结。

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  四、巩固练习。

  练一练第1~4题。

  五、《作业本》第2页。

圆柱的表面积教案9

  教学目标

  1.认识掌握圆柱各部分名称,建立圆柱体空间概念;

  2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。

  教学重点和难点

  1.教学重点:推导圆柱体侧面积的计算方法。

  2.教学难点:圆柱体侧面积公式的推导过程。

  教学过程设计

  (一)复习准备

  师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?

  生:长方形。

  师把长方形贴在黑板上。

  师:面积如何求?

  生:长方形面积=长×宽。(师板书)

  师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。

  师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?

  然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。

  师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?

  师:今天我们就来学习一种新的形体——圆柱体。(板书课题——圆柱)

  (二)学习新课

  1.圆柱体的认识。

  师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)

  生:上、下两个面和周围一个面。

  师:上、下两个面是什么形状?它们的面积大小怎样?

  生:上、下两个面是圆形,面积相等。

  师:我们把圆柱上、下两个面叫做底面。(板书:底面)

  师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)

  师:我们把一个圆在平面上滚动一周,痕迹是一条线段。如果把这个圆柱在平面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?

  生:是一个长方形。

  师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的'长方形一样大。)

  师接着拿出两个高矮不一样的圆柱体。

  师问:为什么有高有矮呢?由什么决定的?

  生:由高决定的。

  师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。

  师出示投影,让学生指出高。

  师:圆柱的高有多少条?

  生:无数条。

  师:高都相等吗?

  生:都相等。

  师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的实物。)

  师:我们讲的圆柱体都是直圆柱。

  2.圆柱的侧面积。

  (1)推导公式。

  师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。

  讨论题目是:

  a:这个长方形与圆柱体有哪些关系?

  b:你能推导出圆柱体侧面积计算方法吗?

  然后学生汇报讨论结果。

  生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。

  老师板书公式。

  (2)利用公式计算。

  例1 一个圆柱,底面的直径是05米,高是18米,求它的侧面积。(得数保留两位小数)

  老师在黑板上板演。

  下面同学们进行练习。投影练习题:

  ①一圆柱底面半径是5厘米,高5厘米,求侧面积。

  ②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。

  ③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。

  师:你能知道第③题圆柱侧面展开图是什么图形吗?

  3.圆柱的表面积。

  师在课题“圆柱”后面接着写“的表面积”。

  (1)推导公式。

  师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体平面展开图,让同学们进行讨论。)

  生汇报讨论结果,老师板书公式:

  S表=S侧+2S圆

  (2)利用公式计算。

  (投影出示)

  例2 计算圆柱体的表面积(见下图)。(单位:厘米)

  同学说思路,老师板书,注意每一步结果写计量单位。

  解 ①侧面积:2×314×5×15=471(平方厘米)

  ②底面积:314×52=785(平方厘米)

  ③表面积:471+785×2=628(平方厘米)

  答:它的表面积是628平方厘米。

  例3 一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)

  同学说思路,列式。老师把正确的解答用投影打出来。

  (1)水桶的侧面积

  314×20×24=15072(平方厘米)

  (2)水桶的底面积

  314×(20÷2)2

  =314×102

  =314×100

  =314(平方厘米)

  (3)需要铁皮

  15072+314=18212≈1900(平方厘米)

  答:做这个水桶要用铁皮1900平方厘米。

  小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?

  (三)巩固反馈

  (1)看书第54页第1题。

  (2)投影,指出下面圆柱体的高是几?

  (3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少平方米?(只列式)

  (4)一种轧道机,后轮直径132米,长127米。如果后轮每分钟转动6周,每分钟可轧路面多少平方米?(只列式)

  (5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少平方分米?(结果保留一位小数。)

  (6)一种圆柱形小油漆桶,底面周长5024厘米,高20厘米。每个桶用铁皮多少平方分米?(四人讨论后口头回答。)

  学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。

  思考题:

  (1)你要做一个圆柱体,先确定什么条件?你是怎样做的?

  (2)我们在学习圆面积时,用两个完全一样的圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?

  提示:

  课堂教学设计说明

  本节课的教学设计分三个层次。

  第一层次,使学生认识圆柱体底面、侧面和高。通过让学生观察实物和教具,以及插图和自己举日常生活中的实例,并让学生亲自动手摸一摸、看一看,使学生能准确地掌握圆柱体的特征。

  第二层次,推导圆柱体的侧面积计算公式和表面积计算方法。

  首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。老师用圆柱体在黑板上贴有长方形处滚动一周,使学生了解到这个长方形的长就是底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形面积公式很自然地推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转平面、形变量不变的辩证关系,培养同学们的观察分析能力。

  第三层次是针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。

  板书设计

圆柱的表面积教案10

  教学内容:

  P13-14页例3-例4,完成做一做及练习二的部分习题。

  教学目标:

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

  教学重点:

  掌握圆柱侧面积和表面积的计算方法。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学过程:

  一、复习

  1.指名学生说出圆柱的特征.

  2.口头回答下面问题.

  (1)一个圆形花池,直径是5米,周长是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长宽.

  二、新课

  1.圆柱的'侧面积。

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长高)

  2.侧面积练习:练习七第5题

  (1)学生审题,回答下面的问题:

  ①这两道题分别已知什么,求什么?

  ②计算结果要注意什么?

  (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

  (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  3.理解圆柱表面积的含义.

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积2

  4.教学例4

  (1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

  (2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

  (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

  ①侧面积:3.142028=1758.4(平方厘米)

  ②底面积:3.14(202)2=314(平方厘米)

  ③表面积:1758.4+314=20xx.42080(平方厘米)

  5.小结:

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.

  三、巩固练习

  1.做第14页做一做。(求表面积包括哪些部分?)

  2.练习七第6题。

  板书:

  圆柱的侧面积=底面周长高

  圆柱的表面积=圆柱的侧面积+底面积2

  例4:①侧面积:3.142028=1758.4(平方厘米)

  ②底面积:3.14(202)2=314(平方厘米)

  ③表面积:1758.4+314=20xx.42080(平方厘米)

圆柱的表面积教案11

  教学目标

  知识与技能:

  1.能根据具体情境,灵活运用圆面积和长方形面积理解圆柱体的表面积。

  2.通过想象、动手操作等活动,理解圆柱侧面展开图是一个长方形,加深对圆柱特征的认识,发展空间观念。

  3.探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  1.2过程与方法:

  讲解圆柱体表面积的过程中,培养学生初步的观察能力以及想象、概括能力。

  1.3情感态度与价值观:

  引导学生进一步体会立体图形的平面化,感受数学探索活动本身的乐趣,增强学好数学的信心。

  教学重难点

  教学重点:

  让同学们理解圆柱的表面积计算方法。

  教学难点:

  能够分清侧面积和表面积的区别,合理应用到日常生活中.

  教学工具

  课件、多媒体设备等

  教学过程

  一、情境导入

  师:同学们,在如常生活中我们经常会遇到一些圆柱体,比如我手里面拿的水杯,你们知道他有哪些东西组成的吗?

  生:同学们举手进行回答。

  师:这个水杯有哪些面组成呢?

  生:上底面、下底面、侧面

  师:多媒体出示动画

  师:我们可以看出它有三部分组成。

  师:现在想一下这三部分都是什么图形?

  生:上下底面(圆形),侧面(长方形)

  师:把这三个面积加起来,就是我们今天要学习的圆柱的表面积。

  生:举手口述连线答案。

  师:课件出示答案

  圆柱的侧面积=底面周长×高

  师:现在,我们来看一些数量关系:

  ①柱体上下底面面积相等;

  ②圆柱体侧面长=底面圆周长

  ③圆柱体侧面宽=圆柱体高

  二、探究新知

  (一)、侧面积

  师:我们现在来看看圆柱体的侧面积是怎样计算的。

  学生:举手发言

  在回答问题的过程中教师要用鼓励性的语言激发学生探求知识的能力。

  师:多媒体出示答案

  圆柱侧面积=长×宽=底面圆周长x高

  师:现在我们看看在实际应用中是如何计算的。(多媒体出示问题)

  1、已知圆柱体的底面圆半径为50px,高为125px,求一下这个圆柱体的侧面及时多少?

  生:举手回答

  师:多媒体出示答案

  解:周长=2πr=2×2π=4π

  侧面积=周长×高=4π×5=20πcm?

  师:同学们要认真观察书写步骤。

  (二)、表面积

  师:现在我们来看看圆柱体的表面积是怎么计算的。

  生:举手回答问题

  师:多媒体出示答案

  圆柱表面积=侧面积+底面积=侧面积+上底面积+下底面积

  师:下面我们再来做一个练习吧!

  2、现在要制作一个底面半径为2dm,高为10dm的圆柱形铁桶,需要多少铁皮?

  师:同学们可以先算出侧面积和底面积,然后再算表面积。

  生:通过同学们互相竞争,增强了同学们学习数学的兴趣。

  解析:

  解:周长=2πr=2×2π=4π

  侧面积=周长×高=4π×10=40π

  底面圆面积=πr?=4π

  圆柱表面积=侧面积+2底面积=40π+2x4π=40π+8π=48π

  答:需要48πdm?铁皮

  三、巩固练习

  师:现在请大家看屏幕上面的这道题,能不能分小组解决问题。(课件出示题目)

  1、天气冷了,农村学生就要生火了,烟囱使用铁皮做的,一节烟囱长为20xxpx,烟囱的半径为100px,求制作这样的.烟囱一节需要多少铁皮。

  师:要找出题目的关键,理清思路,细心解题。

  生:学生互相探讨交流,完成整个题目,培养学生独立思考的能力。

  解析:

  解:周长=2πr=2×4π=8π

  表面积=侧面积=8π×10=80π

  答:制作这样的烟囱一节需要80πcm?铁皮

  师:接下来,再看一个题目,这次也要分组进行,看看哪个组做得又快又好。(课件出示题目)

  2.现在要砌一个圆柱形的水窖,预计水窖深3米,水窖底的底面直径为1.5米,现在求一下整个水窖需要抹去多少平方米的混凝土。

  生:各小组在竞争中享受获取知识的乐趣。

  解析:周长=πd=1.5π

  表面积=侧面积+下底面积=1.5π×3+2.25π=6.75π

  答:整个水窖需要抹去6.75π平方米的混凝土

  师:现在大家独立完成下面的题目(出示题目)。

  3、已知一个圆柱体的表面积是15700px?,其中圆柱体的底面半径50px,求圆柱体的高。

  解:设圆柱体的高为h

  根据:表面积=侧面积+2底面积

  628=2×2πh+2×π2?

  628=4πh+8π

  628=4×3.14h+8×3.14

  20=4h+8

  h=4

  答:圆柱体的高4米

  7作业布置

  师:在作业本上面完成下面的2个题目。

  1、一个圆柱体,如果底面半径为5,圆柱体高为10,那么,求一下圆柱体的侧面积和表面积?

  解:周长=2πr=2×5π=10π

  侧面积=周长×高=10π×10=100π

  底面积=πr?=25π

  表面积=侧面积+2底面积=100π+2×25π=150π

  2、现在要给一个圆柱形的纸质品涂上颜色,现在知道该艺术品的底面圆半径为50px,圆柱体高为125px,请同学们求出圆柱体的表面积。

  解:周长=2πr=2×2π=4π

  侧面积=周长×高=4π×5=20π

  底面积=πr?=4π

  表面积=侧面积+2底面积=20π+4π=24π

  课后小结

  这堂课大家通过学习圆柱体的表面积,使同学们能用学过的知识去解决一些实际的图形面积问题。主要为了让同学们能够建立丰富的想象,把立体图形转化为平面图形的能力,在教学中涉及了学生互动,分组学习等教学模式,真正体现了学生的主体地位。让学生在课堂上动起来,寻找知识、体会知识,并通过练习提高学生的想象能力和抽象思维能力。

圆柱的表面积教案12

  教学目标

  1.能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,感受到数学与生活的密切联系。

  2.通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。

  3.结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  教学重点

  认识圆柱侧面展开图的多样性。

  教学难点

  能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

  教学用具

  课件、圆柱体的'瓶子、剪子

  教学过程

  一、创设情境,引起兴趣。

  拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)

  二、自主探究,发现问题

  研究圆柱侧面积:

  1.独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。

  2.观察对比:观察展开的图形各部分与圆柱体有什么关系?

  3.小组交流:能用已有的知识计算它的面积吗?

  4.小组汇报。 (选出一个学生已经展开的图形贴到黑板上)

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  长方形的面积=圆柱的侧面积即 长宽 =底面周长高,所以,

  圆柱的侧面积=底面周长高 S 侧 == C h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2rh

  如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

  研究圆柱表面积:

  1.现在请大家试着求出这个圆柱体茶叶罐用料多少。

  学生测量,计算表面积。

  2.圆柱体的表面积怎样求呢?

  得出结论:圆柱的表面积 = 圆柱的侧面积+底面积2

  3.动画:圆柱体表面展开过程

  三、实际应用

  1.解决书上的例题。

  2.填空。

  圆柱的侧面沿着高展开可能是( )形,也可能是( )形。第二种情况是因为( )。

  3.要求一个圆柱的表面积,一般需要知道哪些条件( )。

  4.教材第六页试一试。

圆柱的表面积教案13

  教学目标:

  1、培养学生认真仔细地好习惯。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  教学重点:

  运用所学的知识解决简单的实际问题。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学准备:小黑板

  教学过程:

  一、复习:

  1、圆柱的侧面积怎么求?

  (圆柱的侧面积=底面周长×高)

  2、圆柱的表面积怎么求?

  (圆柱的表面积=圆柱的侧面积+底面积×2)

  3、练习四第1题:

  根据已知条件求出圆柱的侧面积和表面积。

  (第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用C÷π÷2来求出圆柱的底面半径)

  二、实际应用:

  1、练习四第6题:

  (1)复习长方体、正方体的表面积公式:

  长方体的表面积=(长×宽+长×高+宽×高)×2

  正方体的表面积=棱长×棱长×6

  (2)学生独立完成第6题:

  计算长方体、正方体、圆柱体的表面积,并指名板演。

  2、练习四第7题:

  (1)用教具辅助,引导学生思考:前轮转动一周,压路面的'面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)

  (2)学生独立完成这道题,集体订正。

  3、练习四第9题:

  (1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)

  (2)指名板演,其他学生独立完成于课堂练习本上。

  4、练习二第13题:

  (1)学生读题理解题意后尝试独立解题。

  (2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。

  5、 第11题:

  (1)学生小组讨论:可以漆色的面有哪些?

  (2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。

  (3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数。

圆柱的表面积教案14

  教学内容:教材第4~5页例2、例3和练一练及练习一。

  教学要求:

  1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  教具学具准备:教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

  教学重点:掌握圆柱侧面积的计算方法。

  教学难点:能根据实际情况正确地进行计算。

  教学过程:

  一、铺垫孕伏:

  1.复习圆柱的特征。提问:圆柱有什么特征?

  2.计算下面圆柱的侧面积(口头列式):

  (1)底面周长4.2厘米,高2厘米。

  (2)底面直径3厘米,高4厘米。

  (3)底面半径1厘米,高3.5厘米。

  3.提问:圆柱的一个底面面积怎样计算?

  4.引入新课。

  我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

  二自主研究:

  1.认识表面积计算方法。

  (1)请同学们拿出圆柱来看一看,想一想圆柱的表面包括哪几个部分,然后告诉大家。指名学生拿出圆柱,边指边说明它的表面包括哪几个部分。

  (2)教师演示。

  出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

  (3)得出公式。

  请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?

  2.教学例2。

  出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

  3.组织练习。

  做练一练。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的'表面积,要注意题里的条件,正确列出算式计算。

  4.教学例3。

  出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。

  5.组织练习。

  (1)第七页第四题(2)。先小组合作讨论,再书面练习,然后集体订正。

  三、课堂小结

  这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用四舍五入法。

  四、布置作业

  练习一第8、10、11题及数训。

  五、板书设计:

  圆柱的表面积

  圆柱的表面积=圆柱侧面积+两个底面的面积

  例2(1)S侧:20xx.1444=5526.4(平方厘米)

  (2)S底:20203.14=1256(平方厘米)

  (3)S表:5526.4+12562=8038.4(平方厘米)

  答:-------。

圆柱的表面积教案15

  教材分析

  《圆柱的表面积》包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。

  例2是求圆柱的表面积。先说明圆柱的表面积的意义,在给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分,求表面积。例3是让学生运用求圆柱表面积的方法求出做一个没有盖的圆柱形铁皮水桶的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。

  学情分析

  本班学生动手能力不是很强,自主探究方法、方式较少。

  教学目标

  使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。

  教学重点和难点

  理解和掌握求圆柱表面积的计算方法。

  教学过程

  (一)创设生活情景,激励自主探索

  在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”

  (二)创设探究空间,主动发现新知

  1、 认识圆柱的表面

  师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?

  生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。

  师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)

  生:我知道了,圆筒是用长方形纸卷成的

  师:各小组试试看,这位同学说的对吗?

  (其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)

  师:还有别的可能吗?如三角形、梯形。

  生:不能。如果是的话,就不是这种圆柱形的饮料罐了。

  (评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的.基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)

  2、 把实际问题转化为数学问题

  师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?

  学生观察、思考、议。

  生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。

  生B:求饮料罐铁皮用料面积就是求:

  圆面积X2+ 长方形面积

  生C:必须知道圆的半径、长方形的长和宽才能求面积。

  生D:我看只要知道圆的半径和高就可以求出用料面积。

  师:我们让这位同学谈谈他的想法。

  生D:长方形的长与圆的周长相等,长方形的宽与高相等。

  所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。

  师随着板书:长方形 = 长 × 宽

  ↓ ↓ ↓

  圆柱的侧面积 = 底面周长 × 高

  (三)自主总结规律 验证领悟新知

  让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 r h

  师:如果圆住展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (四)解决生活问题 深化所学新知

  师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。

  生汇报。

  师:通过计算,你有哪些收获?

  生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于则面积加上底面积和的两倍。

  生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。

  板书设计

  长方形 = 长 × 宽

  ↓ ↓ ↓

  圆柱的侧面积 = 底面周长 × 高