作为一名人民老师,我们的工作之一就是教学,通过教学反思可以有效提升自己的课堂经验,来参考自己需要的教学反思吧!下面是小编为大家整理的《圆的周长》教学反思,欢迎阅读,希望大家能够喜欢。
《圆的周长》教学反思1
我在设计圆的周长这节课时,先让学生独立思考,然后小组合作,大胆猜想圆的周长可能与什么有关,再引导学生通过实际计算几个大小不等的圆形物体的周长与直径的比值,使学生明确自己的猜想是否正确,再让学生在动手操作、测量、观察和讨论中经历探索圆的周长。首先,我在学生动手操作探索出绕绳法和滚动法,然后又提出现实生活中的操场、水池等物体,使学生自己切实体会到有些圆的周长没办法用绕线和滚动的方法测量出来,从而再去探索新的方法,这使得下面的学习有了驱动力。我们说,要以学生为主体,其本质就是学生学习内驱力的唤醒和激发。
在接下来的引导中,我又较好地处理了圆的周长公式中,圆的周长与圆的直径的关系。探索圆的周长为什么要考虑到圆的半径或直径?有很多案例在这一点的处理上显得突兀。在这节课中,我提出圆的周长和什么有关系呢?当学生说出圆的周长与直径有关时,教师又进一步追问:你觉得是和直径有关系,说说理由好吗?这就唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来的猜想、探索、验证自然、顺畅,有了根基。
特别是在测量周长与计算周长与直径的比值这一环节中,我采用了小组合作法,小组同学有的测量,有的记录,有的用计算器计算。让学生在具体实验中,体会圆的周长是直径的三倍多一点,从而导入圆周率的教学,知道圆周率的相关知识。进一步推导出c=πd,c=2πr。动手操作,合作探究加深了学生对所学知识的理解,达到突破难点的效果,体现了课堂教学的有效性。学生的合作能力、思维能力、特别是创新能力和实践能力也可以得到发展。
另外,课堂上充分发挥了多媒体的作用。使学生在生动、形象的画面中加深对所学知识的理 本节课带给我的不仅仅是这些收获,还有关于教学不足的思考,比如教学语言不够精炼,课上不能注意倾听学生回答,圆的周长的概念教学不扎实,再一个就是对学生不够了解,师生互动不是很流畅,这也是我在今后教学中,应该注意的问题。
《圆的周长》教学反思2
圆的周长这节课的重点是理解圆的周长的意义及计算公式的推导过程,难点是理解掌握圆的周长公式及圆周率。教学前为了使学生能利用知识迁移归律总结出圆的周长的概念,探究新知前,我设计了复习什么是长方形的周长,什么是正方形的周长的问题,然后提问什么是圆的周长?这时学生可利用正方形和长方形的周长的概念,归纳总结出圆的周长的意义:即围成圆的曲线的长。
然后我设计了这样的问题:怎样测量圆的周长?有几种方法?我打破了教材有什么教什么的传统做法,放手让学生探索创造,学生带着老师提出的问题,一边思考,一边动手。把学习的主动权交给学生, 这样,学生有充裕的思考时间,有自由的活动空间, 有自我表现的机会,更有了一份创造的信心。同学们个个情绪高涨,跃跃欲试。通过动手操作,大胆实践探索出"绕""滚""量"三种方法测量圆的周长,促进其创造性思维的发展,我肯定了他们的方法。当学生们尝到成功的喜悦时,我又引出了甩小球的游戏,让学生观察形成的虚圆。我又问虚圆的周长还能用刚才的方法测量吗?这个问题打破了学生的认知平衡,使学生陷入冥思苦想之中,日常生活中有许多圆是根本无法测量其周长的,这时我引导学生猜想,并在此观察甩小球游戏,最终使学生悟出圆的周长与它的半径或直径有关。为什么圆的周长仅与其半径或直径有关?这个问题教材里未显示有关内容,如果教师不设计这个问题,学生往往就不知其所以然,因此在这个环节我设计了甩不同绳长的小球让学生观察、猜想。让学生知其然还知其所以然。感
悟理解新知十分重要,让学生的学习过程,成为一个再创造,再发现的过程。这种过程突出学生自己探究知识,如何生成"结论",突出思维方式和思维习惯的训练与培养。在验证结论时,我又让学生自主选择验证方法,把学习的主动权交给了学生,体现了学生是学习过程的主体,教师起主导作用。学生选择自己喜欢的方式学习,十分感兴趣,并且很快的得出了结论。由于新知识是学生自己猜想出来的,自己又用自己喜欢的方法验证的,由此学生对新知理解得很好,在运用过程中收到了良好的效果。我体会了教师教是为了不教,学会是为了会学的真正含义。
通过本节课的教学,我更进一步感受到了,课堂教学中提问的重要性,理解到深挖教材的内涵是设计好问题的前提,根据教材的内涵,巧设问题可提高课堂效率。 如果我们每一个问题的提出都能充分调动学生的学习动机,发掘学生内在的积极因素,能够成为学生一步步登上知识殿堂的桥梁和阶梯,那么我们的课堂提问就一定是有效的。
《圆的周长》教学反思3
1、本节课有两个难点:如何测量出圆的周长?发现圆的周长总是它直径的3倍多一些。
2、首先,以旧有知识正方形的周长知识为铺垫引出圆周长知识,并让学生动手摸一摸圆的周长,初步感知周长是一周的长度,增强对圆周长的感性认识,了解之间的区别,前者是线段求和,后者是曲线求长,
3、学生发现尺不能直接测量出圆的周长。从而使学生想出用测绳、用滚动等方法化曲为直。
这节课学生通过量、饶、滚找出周长和直径的倍数关系,用计算器把测量的周长和直径的倍数关系算出,填写报告单,观察数据发现倍数关系,最后概括为圆的周长总是直径的三倍多一些。
4、练习设计应该具有层次性、针对性和综合性,既有帮助学生理解圆的周长、圆周率概念的练习,也有让学生运用公式直接计算圆的周长的练习,还有让学生综合运用有关知识解决简单的实际问题的综合性练习.
5、不足之处,教师引导过多,学生不能独自去探索发现知识。
《圆的周长》教学反思4
在教学《圆的周长》一课时,教材先让学生用不同的方法测量圆的周长。 我打破了教材有什么教什么的传统做法,放手让学生探索创造,学生带着老师提出的问题(如何测量圆的周长?),一边思考,一边动手,把学习的主动权完全交给学生。这样,学生有充裕的思考时间,有自由的活动空间,有自我表现的机会,更有了一份创造的信心。同学们个个情绪高涨,跃跃欲试,课堂气氛异常活跃。通过动手操作,大胆实践,探索出用“绕”、“滚”、“截”等多种方法测量圆的周长,并归纳出它们的共同点:用“化曲为直”的测量方法。这一过程改变了过去那种先告诉学生怎样做,然后让学生按要求做的被动测量方法,而是采用先给学生“材料”,放手让学生在操作和观察中发现规律,得出结论,使学生自觉寻求解决问题的策略,促进了其创造性思维的发展。
当学生品尝到成功的喜悦时,我又引出了甩小球游戏,让学生观察形成的“虚圆”,“虚圆”的周长还能用刚才的这些方法测量吗?这个问题,打破了学生的认知平衡,使学生陷入冥思苦想之中,日常生活中以各种形式存在的圆,用“化曲为直”的测量方法不但麻烦,不精确,有的根本无法测量。就在学生苦苦思索而不得其法时,教师引导学生由联想到猜想,并再次观察甩小球游戏,最终使学生悟出:圆的周长与它的半径或直径有关。这个问题教材未呈现有关内容,所以许多教师教学时都不做解释,学生往往也就不知其所以然。而怎样让学生知其所以然呢?我采用“诱生深入,步步紧逼”的方法,通过联想、猜想、观察甩小球游戏等逻辑严密的教学活动,让学生的学习过程成为一个再创造、再发现的过程。这种过程突出学生自己如何探究知识、如何生成“结论”,突出思维方式和思维习惯的训练与培养,突出解决问题的途径和方法的获得,体现了“教是为了不教,学会是为了会学”的素质教育思想。
《圆的周长》教学反思5
《圆的周长》这节内容是在学生学习了正方形和长方形的基础上,在学习了圆的初步认识,知道圆心、半径、直径及圆的特性的基础上,进而学习圆的周长的。
本课的重点是圆的周长的计算方法,难点是圆的周长的计算公式推导过程,主要是圆周率的理解及其推导。
本节课学生主要采取自主探究,合作学习的学习方法,在学生掌握基本知识的同时,促进他们的学习方法的养成,培养他们的数学素养。其主要为合作学习,让学生学会分析,学会分工,学会分享。其主要采用以下方法:
首先,我让学生在动手操作的活动中探索出“用线绕”,“在直尺上滚”等直接测量圆的周长的方法,在此基础上引出新的问题:“那我们能不能用这些方法测量出圆形跑道的周长是多少?在黑板上画上一个小圆如何测出它的周长?甩球出现的圆能量出它的周长吗?”使学生自己切实体会到“有些圆的周长没办法用绕线和滚动的方法测量出来”,从而再去探索新的方法,这使得下面的学习有了驱动力。我们说,要以学生为主体,其本质就是学生学习内驱力的唤醒和激发。
在接下来的引导中,我又较好地处理了圆的周长公式中,圆的周长与圆的直径的关系。探索圆的周长为什么要考虑到圆的半径或直径?有很多案例在这一点的处理上显得突兀。在这节课中,我提出“圆的周长和什么有关系呢?”当学生说出圆的周长与直径有关时,教师又进一步追问:“你觉得是和直径有关系,说说理由好吗?”这就唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来的猜想、探索、验证自然、顺畅,有了根基。
特别是在测量周长与计算周长与直径的比值这一环节中,我采用了小组合作法,小组同学有的测量,有的记录,有的用计算器计算。让学生在具体实验中,体会圆的周长是直径的三倍多一点,从而导入圆周率的教学,知道圆周率的相关知识。进一步推导出c=πd,c=2πr。动手操作,合作探究加深了学生对所学知识的理解,达到突破难点的效果,体现了课堂教学的有效性。学生的合作能力、思维能力、特别是创新能力和实践能力也可以得到发展。
同时,课堂上还充分发挥了多媒体的作用。使学生在生动、形象的画面中加深对所学知识的理解。
《圆的周长》教学反思6
圆的周长这一节课,已改过去学生直接用直尺测量就能得到平面图形的周长,而圆的周长用直尺直接测量不方便的情况下,通过层层设疑,不断给学生造成思维冲突,从而激发学生去思考、发现方法。--化曲为直。帮助学生掌握"化曲为直"的数学思想方法,使学生主动探索和实践的精神得到了培养。多媒体动画显示的"化曲为直"过程也给学生留下了深刻的印象。
引导发现圆的周长与直径的关系
通过测量计算,让学生在充分感知的基础上发现圆周长与直径的关系,得出结论。学生在观察思考、既合作又分工的操作测量计算以及小组交流等不同学习方式的交互运用中,主动地投入了知识规律的形成和发现过程。同时生动的多媒体动画画面有效地突破了教学难点,激起了学生的积极思维。
计算圆的周长
始终把学生放在学习的主体地位,让学生面对困难自己想办法解决。巩固练习设计精巧,针对性和层次性强,学生当堂完成了教学任务。
《圆的周长》教学反思7
本课的教学设计以上海世博会作为一条主线,贯穿课堂的始终,体现在以下四个方面:
首先,在创设情境时,我在理解教材的基础上,激活教材,创造性地使用教材,以学生的兴趣作为出发点,激发学生的探索欲望,为后面的学习做好铺垫。
其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我向学生提出质疑,以相同的方法测量赤道的长度,在质疑中激发学生的学习兴趣,并促使学生产生探究一般方法的迫切愿望。
第三,学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,第三次回到情景中,使学生在掌握新内容的基础上,解决实际问题,培养学生的应用意识。
最后,在巩固新知解决问题的环节中,以世博会为背景,设计了三道不同层次的练习题,这三道题实现了从基础练到拓展练的跨越,提高学生发现信息、解决问题的能力。
在真正的教学过程中,我发现世博会的情境导入吸引了学生的注意,并对新知识产生了浓厚的兴趣。由于前面“圆的认识”的成功铺垫,因此本节课学生通过动手操作、自主探究、合作交流、展示等活动,理解了“化曲为直”的数学思想方法。在推导公式的过程中,因为亲自经历了小组内探讨圆的周长与直径的关系的过程,所以学生能较为容易地推导出圆的周长计算公式。另外,我及时对学生的发言进行点拨、激励,比如当学生展示巧妙的方法时我赞扬学生的想法有创意,进一步提高了学生积极学习的主动性,使学生体验到获得成功的乐趣。
不足之处:在对学生的表达进行评价时,艺术性稍显不足,另外,我对课堂的掌控和把握能力还需要提高。虽然对教材进行了较为深入地分析,但还没做到彻底地理解。
在未来的工作中,我将弥补以上不足之处,提高个人理论素养,使自己的教学趋于完美。
《圆的周长》教学反思8
本节课内容是在学生学习了正方形和长方形的基础上,在学习了圆的初步认识,知道圆心、半径、直径及圆的特性的基础上,进而学习圆的周长的。
本课的重点是圆的周长的计算方法,难点是圆的周长的计算公式推导过程,主要是圆周率的理解及其推导。
本节课学生主要采取自主探究,合作学习的学习方法,在学生掌握基本知识的同时,促进他们的学习方法的养成,培养他们的数学素养。其主要为合作学习,让学生学会分析,学会分工,学会分享。
本节课我尽量采取情境教学,为学生创设一个乐学、易学、好学的课堂氛围;始终以学生为主体,鼓励他们积极的参与其中,自主学习,作为课堂上真正的学习主人;尽量授之于学习方法,让他们在合作的学习过程中感受到学习的快乐;不断的渗透数学思想,让学生变的会写、会做、会思考;正确的评价学生的学习态度及学习表现,调动学生于一个较高的学习状态中;采用小结、应用等基本教学环节,使学生掌握圆的周长的相关知识,以达到预期的课堂目标;进行中国古代数学文化教育,培养学生的爱国热情及学习热情。
本节课灵活性较强,希望看到学生的不同闪光点,看到他们的创新火花,看到他们快乐学习的笑脸。
本着这样的教学设计与意图来完成小学高年级《圆的周长》这节课的教学工作,课后我感觉:
1、教学环节不是很流畅
2、不能很好地与学生进行配合
3、不能很好的设计最细化的问题,问题较为粗略,学生答题有理解上的困难。回答很是不积极。这是我这节课的失败的关键所在。
4、设计的内容有点过多
5、没有更多的流畅的教学语言,激励性的话语较少,学生的积极性没有得到充分的调动。
通过这节课的教学,我深刻认识到自己的不足,在今后的教学中,我会尽可能的克服这些缺点,不断充实自己,精心设计每一个教案,努力上好每一节课。
《圆的周长》教学反思9
今天在六一班上的《圆的周长》一课,感觉特别好。可能是教师节的气氛感染着学生,学生的.动手速度特别快,积极性也很高。给大家分享一下课堂的流程。
从人人都坐过的旋转木马导入,回忆儿时的快乐。接着问学生,旋转木马旋转一周的距离大约有多少米?学生一时回答不上来,就引导学生,旋转木马旋转一周形成的图形是?学生异口同声:圆。经过一周的距离也就是圆的?周长!板书课题。接着让学生拿出准备的圆片,互相指出圆的周长,有原来学习周长的基础,学生都能完成这项任务。它的周长究竟是多少呢?你有办法知道吗?接着有一个学生说出了绕绳法测圆的周长,叙述非常清晰,我借机表扬他:对于我们不能用尺子直接测量的曲线,你能借助柔软的绳子把曲线变成线段,这种化曲为直的方法多么可贵呀!还有别的方法吗?没有人回答,适时课件出示滚动法。接着让学生拿出准备的三个圆片,标上1,2,3。分别用滚动法和绕绳法测量圆1和圆2的周长,并记录在圆片上。(接下来的课只需让学生再次测量直径,从而提高效率)然后问孩子们:手中的圆片很容易测出周长,摩天轮,地球的赤道会用这两种方法测量吗?学生笑了。看来我们有必要探索一种新的方法,引出圆周率的教学。
《圆的周长》教学反思10
问题是数学的心脏。朱敏华老师在教学《圆的周长》一课时,运用“问题解决”思想,以问题导学,引导学生不断寻求策略,不断解决问题,让学生创造性地学习,使学生较好理解圆周率的意义,并推导出圆周长的计算公式。在这节课中,朱老师有几处的设问非常好,值得我在今后的教学中加以借鉴。
一、在新旧知识的联结处设问。
教学知识往往是在一个或几个旧知识的基础上推出新知识来的。学生在学
习过程中,当原有知识经验和新接受的信息不相适应时,会产生心理上的不平衡,会产生一种力求统一矛盾,解决问题的强烈欲望,所以在新旧知识的联结处设问能引起学生认知冲突,激起他们探究知识的欲望。
在这节课上,当学生说,圆形的周长可以用尺子测量出来后,朱老师先进行了演示,后马上抛出问题:我们有的小区里有圆形的游泳池,我要知道它的周长,我怎么去滚呢?并用一根拴有小球的绳子不停的甩动,形成一个虚圆,继续问:这是一个圆吗?要知道它的周长,我怎么滚怎么包呢?如此一来,学生带着寻求新知识的强烈欲望,进入新的学习情境中。
二、在教学内容的关键处设问。
任何一节教学内容,总有一个比较重要的数学概念或知识,如何指导学生
去理解、掌握这些概念和知识的方法,也是十分重要的。我认为,平时所说的教学关键指的就是这一点。为了使学生掌握解决问题的关键,就要在教学内容的关键处设问。朱老师在这节课上也体现出了这一点。在师生共同得出应该可以通过计算来解决圆形的周长后,朱老师进行了提问:你们估计圆形的周长跟什么有关?学生回答出直径后又问:那么圆形的周长与直径到底是什么关系呢?这一简简单单的一句提问,马上把学生的注意力集中过来,积极投入到实验当中去,并摸索出本节课的教学重点。
三、在探索规律中设问。
学生是学习的主体,由于年龄特点和认知水平的局限,他们在探究知识时
是离不开老师引导的。朱老师在新授内容的探索规律部分巧设疑问,点拨学生思路,启发他们更快地发现规律,完整地概括出科学的结论。
为了确切地把握好每一节课的教学要求,为了使每一节课的教学更具有针对性,为了使学生思维都具有明确的目标,在今后的教学过程中,我应结合教学实际,恰到好处地设问,留给学生更多思考的空间,促进他们积极动脑,尽量使每节课都能够取得较好的教学效果。
《圆的周长》教学反思11
本节课内容是在学生学习了正方形和长方形的基础上,在学习了圆的初步认识,知道圆心、半径、直径及圆的特性的基础上,进而学习圆的周长的。
本课的重点是圆的周长的计算方法,难点是圆的周长的计算公式推导过程,主要是圆周率的理解及其推导。
探索圆周长计算这一环节:一方面,通过小组合作式的测量活动,使学生自主创造出“测绳”和“滚动”两种测量圆周长的方法,丰富了学生的课堂活动,另一方面,通过对两种测量方法的反思及评价,让学生感受到“测绳”和“滚动”这两种方法的局限性,引导学生探索“计算公式”的心情,为继续研究圆周长的计算作好了铺垫。让学生猜想圆的周长可能与圆的什么有关?是直径的多少倍?进一步激起了学生主动探究的欲望,然后让学生利用准备的学具,以小组合作的形式来进一步证明自己的猜想是否具有合理性、科学性。并对有困难的学生进行辅导帮助,学生把自己研究的成果进行交流,发现了规律:圆的周长总是直径的3倍多一些,这是本课的难点。整节课下来,学生学习效果较好,我想,这得益于事先让学生准备的教具比较充分,得益于学生的动手操作,也得益于提出的问题引起了学生的思考。这次课后,我深切的感受到以学生为主体的本质就是激发和唤醒学生学习的兴趣与思考。
《圆的周长》教学反思12
《圆的周长》是六年级上册第一单元圆的内容。本单元《圆》是在第一学段直观认识圆,学习了长方形、正方形等平面图形及其周长、面积的计算的基础上,进一步学习有关圆的知识。圆既是在其他平面图形基础上的拓展,又处处体现着“圆”的特殊性。本单元对圆的探索,将是从直线图形到曲线图形的学习,将是学生初步了解研究曲线图形的基本方法的开始。因此,在本课的教学时,我主要引导学生通过动手操作实践探索研究曲线图形的方法。
在引出圆的周长时,我要求学生借助手中的圆片,感受圆的周长,揭示圆周长的概念,进而引导学生探索如何测量圆的周长。而学生主要提出两种方法:滚动法和绕绳法,在讲解这两种方法时,引导学生认识到在探索圆的周长时,其实质都是将曲线转化成直线,感受此“化曲为直”的思想。接下来让学生通过类比正方形周长与边长的倍数关系猜想圆的周长与直径的关系。
反思自己这一堂课的教学,我觉得比较可取的一点是让学生事先做好教学准备(准备了三个大小不同的圆片与绳子),课堂上让学生经历动手操作实践,从而获得知识的过程。但不足的是,让学生经历动手操作实践的时间比较短,对于较好的学生给以的时间足够,但对于中等生与学困生的给以时间却比较仓促。另外由于部分同学课前预习过教材,导致在探索部分问题时,学生不假思索就将答案喊出,而对于出现这种问题时,我缺乏经验,只采用冷处理说出答案的同学的方法,又继续将课堂进行下去。
《圆的周长》教学反思13
在《圆的周长》教学过程中,我打破了传统的课堂教学结构,注重培养学生的创新意识和实践潜力。整个过程学生从学生已有的知识经验出发,透过设疑、观察、猜想、验证、交流、归纳,亲历了探究圆的周长这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感,注重教学过程的探索性。
《标准》在“教学要求”中,增加了“透过观察、操作、猜测等方式,培养学生的探索意识”的资料;在“教学应注意的几个问题”中,专门把“重视学生的探索意识和实践潜力”作为一个问题进行论述,要求教师“依据学生的年龄特征和认知水平,设计探索性和开放性的问题,给学生带给自主探索的机会,让学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,理解数学问题的提出,数学概念的构成和数学结论的获得,以及数学知识的应用”,“构成初步的探索和解决问题的潜力”。
(1)开放教学过程,体现学生主体。
在圆的周长这节课中,教师鼓励学生根据自己的“数学现实”理解情景,发现数学,打破封闭式的教学过程,构建“问题—探究—应用—反思”的开放式学习过程,体现学生是学习的主人,教师是教学活动的组织者、引导者和参与者。
(2)引导学生探索,开发创造潜能。教师巧妙地利用生活原型,激活与新知学习有关的旧知,引导学生从原先的知识库中提取有效的信息,透过观察、猜想、验证、交流,逐步得出超多的可信度较高的素材,然后抽象概括、构成结论,并进行应用。在这个过程中,透过学生探索与创造、观察与分析、归纳与验证等一系列数学活动,自主发现、合作探索圆的周长与直径的倍数关系,使学生感受到数学问题的探索性,并从中认识到数学思考过程的条理性和数学结论的确定性。
(3)反思探索过程,体验成功情感。问题解决后,引导学生对探究学习的活动过程进行反思:应对一个实际问题,我们是怎样来解决的?从中提炼出解决问题、获得新知的数学思想方法和有效策略,并自觉地将思维指向数学思想方法和学习策略上,从中获得用心的情感体验。
总之,本节课在教学过程中,突出了知识的系统性,学生的亲历性,尽量培养学生的主体意识和合作潜力,问题让学生自己和同学之间的合作去揭示,方法让学生自己去探究,规律让学生自己去发现,知识让学生自己去获得。课堂上给学生以充足的思考时间和活动空间,同时给学生表现自我的机会和成功的体验,培养了学生的自我意识和合作潜力,发挥了学生的主体作用。
《圆的周长》教学反思14
几年来,我们二小数学教研一向以同课异构的方法进行公开课教学与教研。所谓同课异构,指的是上同一节课用不一样的教学设计进行教学。一节课下来,教师们展现了自我的个人魅力,构成了自我独特的教学风格。
我一向在思考一个问题,如果用同课同构,即同年段教师进行团体备课,上同一节课用同样的教学设计进行教学,是否更能节省教研时间,共享教学资源的研发。而在同样的教学设计实施中,加以自我个人魅力,并不断进行教学设计的改善,是否更能促进课堂教学有效性的研究。
经过我们几个年段教师的讨论,我们决定在年段公开课中采用同课同构这一方法。我们以《圆的周长》这一课进行团体备课,并于10月29日这一天由三位教师连开了三节课。
精彩的课堂来自精彩的预设,教学是一项复杂的活动,它需要教师课前做出周密的策划,这就是对教学的预设。课堂教学是一个动态生成的过程,再好的预设,也无法预知课堂教学中的全部细节。但要有精彩的课堂生成,我们必须作精心的预设。生成,离不开科学的预设:预设,是为了更好地生成。一堂课前,我们总会精心设计每一节课,而教学的每个设计、每个活动都离不开课前预设。预设时,我们要直面学生的数学现实,即:多从学生已有的知识基础、生活经验、认知规律和心理特征设计教学,确定切合学生实际的教学目标,因为仅有在预设上多下功夫,理智地认识生成,才能更好地解决课堂生成的问题。新理念指出:课堂教学是教师和学生共同的生命历程。课堂教学应当焕发生命的活力。生命状态的数学学习是生成的数学学习,它不该根据预设教案按部就班进行,而是充分发挥师生双方的进取性,随着数学活动的展开,教师、学生的思想和教学文本不断碰撞,创造火花不断迸发,新的学习需求、方向不断产生,学生在这个过程中兴趣盎然,认识和体验不断加深,这就是生成的课堂教学。在这样课堂上,学生才有更多的机会用自我的独特方法去认识体验所学知识,同时还伴随着许多意外的发现。我们备课的重点就这样放在了精彩的预设。
第一节课纪教师努力创设平等、民主、安全、愉悦的教学环境,激趣引入、演示操作、指导学生合作探究周长的计算方法,力求让学生经历科学发现的完整过程。纪惠玲上完一节课,我们立刻在叶福泉教师的指导下共同探讨。李维准教师之后上了第二节课,针对纪教师上节课的不足处怎样引导学生猜想圆的周长与直径有关系?,他做了一个简单教具:细绳一端绑着一个物品,甩动成圆形,细绳短,圆小,圆的周长就小,细绳长,圆大,圆的周长就大,体会细绳也就是半径与圆周长的关系,从而体会到直径大周长就长,直径小周长就短的道理。而其他的教学细节也更趋完美了。午时,我之后上第三节课,压力真的是很大。为了解决上午两节课精彩有余练习不足的弱点,我大胆使用了计算器,由于计算周长用到圆周率3.14,同学们算起来数字大计算繁难。使用计算器后,节省了较多的时间,同学们进行的练习更全面深入了。对新课的认识更加深刻了。
总结我上的这节课,先让学生认识圆的周长再经过测量圆的周长和直径并求出它们的比值,得出圆周率;然后经过圆周率和圆的周长的关系推导出圆的周长的计算公式。巴班斯基的最优化理论指出:应根据学生在不一样的学习水平的变化来完善教学方案,实行最佳组合。在实际的教学中,我遵循小学生的认知规律,把所学的资料按照从直观到抽象、从感性到理性的过程安排。
首先,我在学生动手操作探索出用线绕,在直尺上滚等直接测量圆的周长后,我又引出新的问题:那我们能不能用这些方法测量出圆形跑道的周长是多少?在黑板上画上一个小圆如何测出它的周长?甩球出现的圆能量出它的周长吗?使学生自我切实体会到有些圆的周长没办法用绕线和滚动的方法测量出来,从而再去探索新的方法,这使得下头的学习有了驱动力。我们说,要以学生为主体,其本质就是学生学习内驱力的唤醒和激发。
在接下来的引导中,我又较好地处理了圆的周长公式中,圆的周长与圆的直径的关系。探索圆的周长为什么要研究到圆的半径或直径?有很多案例在这一点的处理上显得突兀。在这节课中,我提出圆的周长和什么有关系呢?当学生说出圆的周长与直径有关时,教师又进一步追问:你觉得是和直径有关系,说说理由好吗?这就唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来的猜想、探索、验证自然、顺畅,有了根基。
异常是在测量周长与计算周长与直径的比值这一环节中,我采用了小组合作法,小组同学有的测量,有的记录,有的用计算器计算。让学生在具体实验中,体会圆的周长是直径的三倍多一点,从而导入圆周率的教学,明白圆周率的相关知识。进一步推导出c=πd,c=2πr。动手操作,合作探究加深了学生对所学知识的理解,到达突破难点的效果,体现了课堂教学的有效性。学生的合作本事、思维本事、异常是创新本事和实践本事也能够得到发展。
另外,课堂上充分发挥了多媒体的作用。使学生在生动、形象的画面中加深对所学知识的理解。
《圆的周长》教学反思15
传统数学教材,周长的概念描述为“围成一个图形的所有边长的总和叫做它的周长”。但我从数学新课程“空间与图形”的整体目标出发,从学生持续、和谐的发展出发,加强了“周长”与日常生活联系,让学生用自己的语言来描述对“周长”的理解,并一一进行充分肯定,这样教学,充分反映了我对新课程理念的正确认识。
计算长方形、正方形的周长是计算图形周长中的一种特例。它是经过人们的不断总结而获得的。它的特点是计算简便、迅速。但对初次接触的小学生来说,是把重点放在周长公式的结果上,还是注重引导学生在测量具体图形中探索周长的过程,则是两种不同教育观的反映。在教学过程中,我并没有采用传统的“公式—例题—习题”的教学结构模式,而是采用新课程努力倡导的“问题情景—猜想—建立模型—验证与解释—应用与拓展”新型教学模式进行的。
新课程强调“算法的多样化”,就必然要引导学生。但放手让学生进行讨论时,又可能出现吵吵闹闹、课堂气氛嘈杂甚至失控的现象。因此,面对新课程的教学,如何让学生充分讨论,又保证学习进程的顺利进行呢?对于这些情况,我认为首先能够有一颗“平常心”,同时有一些“容忍”,即在讨论与交流的过程中,有一些吵闹是难免的,但有两点原则必须把握好:一是吵闹的东西必须是讨论话题相关的,二是吵闹要不影响别人和教学进程。违反了这两个原则,教师就不能再坐视不管了。
这节课不能仅限于书上或教师给出图形和实物,完全可以联系学生的生活实际,摸、画、量、算身边熟悉的物体或图形,通过大量例子感知各种物体的周长。
在推导长方形、正方形的周长公式中,不要急于归纳公式,而要注重过程。在教学中,既要强调数学思想方法的渗透,但又不应该追求任何强制的统一。在类似的“计算周长”教学中,学生会有各种不同的算法,对他们的不同算法,教师不要急于归纳到公式中去,可以让他们说说算的道理。在多次的测量和计算的过程中,学生自己逐步会掌握用周长公式计算的方法。而是让学生通过独立思考、探究与计算的过程,自己会去体会他喜欢或者能够理解的算法,真正体现了“算法的多样化”和“让不同的人学不同的数学”的新课程理念。