美文日 - 美文欣赏阅读,用心与您分享。

首页范文写作正文

二元一次方程组教案

教案2023-02-27 12:29:43

  作为一名人民教师,通常会被要求编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么大家知道正规的教案是怎么写的吗?下面是小编收集整理的二元一次方程组教案,仅供参考,欢迎大家阅读。

二元一次方程组教案1

  二元一次方程组是从实际生活中抽象出来的数学模型,它是解决实际问题的有效途径,更是今后学习的重要基础.它是在一元一次方程的基础上来进一步研究末知量之问的关系的,教材通过实例引入方程组的概念,同时引入方程组解的概念,并探索二元一次方程组的解法,具体研究二元一次方程组的实际应用.

  本章学习重难点

  【本章重点】会解二元一次方程组,能够根据具体问题中的数量关系列出方程组.

  【本章难点】列方程组解应用性的实际问题.

  【学习本章应注意的问题】

  在复习解一元一次方程时,明确一元一次方程化简变形的原理,类比学习二元一次方程组、三元一次方程组的解法,同时在学习二元一次方程组、三元一次方程组的解法时,要认真体会消元转化的思想原理,在学习用方程组解决突际问题时,要积极探究,多多思考,正确设未知数,列出恰当的方程组,从而解决实际问题.

  中考透视

  在考查基础知识、基本能力的题目中,单独知识点考查类题目及多知识点综合考查类题目经常出现,在实际应用题及开放题中大量出现.所以在学习本章内容的过程中一定要结合其他相应的知识与方法,本章是中考的重要考点之一,围绕简单的二元一次方程组的解法命题,能根据具体问题的数量关系列出二元一次方程组,体会方程是描述现实世界的一个有效模型,并根据具体问题的实际意义用观察、体验等手段检验结果是否合理.考试题型以选择题、填空题、应用题、开放题以及综合题为主,高、中、低档难度的题目均有出现,占4~7分.

  一、知识性专题

  专题1运用某些概念列方程求解

  【专题解读】在学习过程中,我们常常会遇到二元一次方程的未知数的指数是一个字母或关于字母的代数式,让我们求字母的值,这时巧用定义,可简便地解决这类问题

  例1若=0,是关于x,y的二元一次方程,则a=_______,b=_______.

  分析依题意,得解得

  答案:

  【解题策略】准确地掌握二元一次方程的定义是解此题的关键.

  专题2列方程组解决实际问题

  【专题解读】方程组是描述现实世界的有效数学模型,在日常生活、工农业生产、城市规划及国防领域都有广泛的应用,列二元一次方程组的关键是寻找相等关系,寻找相等关系应以下两方面入手;(1)仔细审题,寻找关键词语;(2)采用画图、列表等方法挖掘相等关系.

  例2一项工程甲单独做需12天完成,乙单独做需18天完成,计划甲先做若干后离去,再由乙完成,实际上甲只做了计划时间的一半因事离去,然后由乙单独承担,而乙完成任务的时间恰好是计划时间的2倍,则原计划甲、乙各做多少天?

  分析由甲、乙单独完成所需的时间可以看出甲、乙两人的工作效率,设总工作量为1,则甲每天完成,乙每天完成.

  解:设原计划甲做x天,乙做y天,则有

  解这个方程组,得

  答:原计划甲做8天,乙做6天.

  【解题策略】若总工作量没有具体给出,可以设总工作量为单位1,然后由时间算出工作效率,最后利用工作量=工作效率工作时间列出方程.

  二、规律方法专题

  专题3反复运用加减法解方程组

  【专题解读】反复运用加减法可使系数较大的方程组转化成系数较小的方程组,达到简化计算的目的

  例3解方程组

  分析当方程组中未知数的系数和常数项较大时,注意观察其特点,不要盲目地利用加减法或代入法进行消元,可利用反复相加或相减得到系数较小的方程组,再求解.

  解:由①-②,得x-y=1,③

  由①+②,得x+y=5,④

  将③④联立,得

  解得即原方程组的解为

  【解题策略】此方程组属于型,其中| - |=k|a-b|, + =m|a+b|,k,m为整数.因此这样的方程组通过相加和相减可得到型方程组,显然后一个方程组容易求解.

  专题4整体代入法解方程组

  【专题解读】结合方程组的形式加以分析,对于用一般代入法和加减法求解比较繁琐的方程组,灵活灵用整体代入法解题更加简单.

  例4解方程组

  分析此方程组中,每个方程都缺少一个未知数,且所缺少的未知数又都不相同,每个未知数的系数都是1,这样的.方程组若一一消元很麻烦,可考虑整体相加、整体代入的方法.

  解:①+②+③+④,得3(x+y+z+m)=51,

  即x+y+z+m=17,⑤

  ⑤-①,得m=9,⑤-②,得z=5.

  ⑤-③,得y=3,⑤-④,得x=0.

  所以原方程组的解为

  专题5巧解连比型多元方程组

  【专题解读】连比型多元方程组通常采用设辅助未知数的方法来求解.

  例5解方程组

  解:设,

  则x+y=2k,t+x=3k,y+t=4k,

  三式相加,得x+y+t= ,

  将x+y+t=代入②,得=27,

  所以k=6,所以

  ②-⑤,得x=3,②-④,得y=9,②-③,得t=15.

  所以原方程组的解为

  三、思想方法专题

  专题6转化思想

  【专题解读】对于直接解答有难度或较陌生的题型,可以根据条件,将其转化成易于解答或比较常见的题型.

  例6二元一次方程x+y=7的非负整数解有( )

  A.6个

  B.7个

  C.8个

  D.无数个

  分析将原方程化为y=7-x,因为是非负整数解,所以x只能取0,1,2,3,4,5,6,7,与之对应的y为7,6,5,4,3,2,1,0,所以共有8个非负整数解.故选C.

  【解题策略】对二元一次方程求解时,往往需要用含有一个未知数的代数式表示出另一个未知数,从而将求方程的解的问题转化为求代数式的值的问题.

  专题7消元思想

  【专题解读】将未知数的个数由多化少,逐一解决的思想即为消元思想.

  例7解方程组

  分析解三元一次方程组可类比解二元一次方程组的代入法和加减法,关键是消元,把三元变为二元,再化二元为一元,进而求解.

  解法1:由③得z=2x+2y-3.④

  把④代入①,得3x+4y+2x+2y-3=14,

  即5x+6y=17.⑤

  把④代入②,得x+5y+2(2x+2y-3)=17,

  即5x+9y=23.⑥

  由⑤⑥组成二元一次方程组解得

  把x=1,y=2代入④,得z=3.

  所以原方程组的解为

  解法2:由①+③,得5x+6y=17.⑦

  由②+③2,得5x+9y=23.⑧

  同解法1可求得原方程组的解为

  解法3:由②+③-①,得3y=6,所以y=2.

  把y=2分别代入①和③,得解得

  所以原方程组的解为

  【解题策略】消元是解方程组的基本思想,是将复杂问题简单化的一种化归思想,其目的

  是将多元的方程组逐步转化为一元的方程,即三元二元一元.

二元一次方程组教案2

  1学情分析

  本节内容是在学生掌握了二元一次方程组的解法,能列二元一次方程组解较简单的应用题的基础上安排的,其中的“牛饲料问题”“种植计划问”“成本与产出问题”是具有一定综合性的问题,涉及到估算与精确计算的比较、开放地探索设计方案、根据图表信息列方程组等问题形式。由于本节需要探究的问题比较复杂,所以在教学的过程中,一方面需要设置部分台阶减小坡度、分散难点,另一方面需要用一些具体的方法引导学生学会分析和表达,还要留给学生充足的思考、交流、整理、反思的时间。在解决问题的过程中,使学生体会到方程组应用的广泛性与有效性,提高分析解决问题的能力。

  根据我校农村学校学生的具体学习情况和认知特点,本节内容设计为3个教学课时,第一课时主要引导学生探索列方程组解应用题的步骤和基本思路;第二课时主要进行综合性应用问题的探索;第三课时主要进行思维拓展和巩固提高。

  2教学目标

  (一)知识与技能

  1、会用二元一次方程组解决生产生活中的实际问题;

  2、用方程组的数学模型刻画现实生活中的实际问题。

  (二)过程与方法

  1、培养学生应用方程解决实际问题的意识和应用数学的能力;

  2、将解方程组的技能训练与解决实际问题融为一体,进一步提高解方程组的技能。

  (三)情感态度与价值观

  1、体会方程组是刻画现实世界的有效模型,培养应用数学的意识。

  2、在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣。

  3、结合实际问题,培养学生关注生产劳动、热爱生活的意识,让学生重视数学知识与实际生活的联系。

  3重点难点

  教学重点:根据题意找出等量关系,列二元一次方程组。

  教学难点:正确找出问题中的两组等量关系。

  4教学过程

  4.1第一学时

  教学活动

  活动1【导入】活动一:逛公园。

  公园一角三个学生的对话:甲:昨天,我们一家8个人去公园玩,买门票花了34元。乙:哦,那你们家去了几个大人?几个小孩呢?丙:真笨,自已不会算吗?成人票5元每人,小孩3元每人啊!

  (设计说明:利用学生熟悉的公园购票设计一个简单的问题,在解决这个问题的同时,使学生熟悉列方程解应用题的一般步骤,以及解二元一次方程组常用的方法,为下一步的探究做好准备。)

  解:设大人为x人,小孩为y人,依题意得

  x+y=8 ①

  5x+3y=34 ②

  解得

  x=5

  y=3

  答:大人5人,小孩3人。

  注:对列出的不同形式的方程组及其解法作简要的比较说明,有意识的引导学生体会解决问题方法的多样性及方法选择的重要性。

  (教学说明:以此活动创设一个学生感兴趣的情景,教师提出问题,学生尝试解答,两名学生板演,结合板演订正,提醒学生注意选择简单的方法解方程组,避免重列轻解现象的发生。)

  活动2【讲授】活动二:参观农场——合作探究。

  养牛场原有30只大牛和15只小牛,1天约需要饲料675kg;一周后又购进12只大牛和5只小牛,这时1天约需要饲料940kg。饲养员李大叔估计平均每只大牛1天约需饲料18至20kg,每只小牛1天约需要饲料7至8kg。请你通过计算检验李大叔的估计是否正确?

  问题1:怎样判断李大叔的估计是否正确?

  (设计说明:引导学生探寻解题思路,并对各种方法进行比较,方法一主要是要估算的运用,而方法二是方程思想的应用学生在比较探究后发现用方法二较简便,思路明确之后进一步考虑具体解答问题)

  判断李大叔的估计是否正确的方法有两种:

  1、先假设李大叔的估计正确,再根据问题中给定的数量关系来检验。

  2、根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确。

  (教学说明:教师提出问题,让学生讨论交流,在此过程中可以逐步理解题意,找到解决问题的方法)

  问题2 思考:题目中有哪些已知量?哪些未知量?等量关系有哪些?

  (设计说明:利用思考中的问题,引导学生分析题目中的数量关系,逐步将学生的思维引向问题的核心,从而顺利解决问题。)

  分析:本题的等量关系是

  (1)30只母牛和15只小牛一天需用饲料为675kg

  (2)(30+12)只母牛和(15+5)只小牛一天需用饲料为940kg

  (教学说明:教师先让学生自己阅读思考,然后同学之间互相交流,最后师生共同得出结论)

  问题3 如何解这个应用题?

  (设计说明:在学生正确理解题意,把握题中数量关系的基础上写出解答过程,一方面可以进一步梳理思路,熟悉解答过程,另一方面把想和做统一起来,在做的过程中发展计算、表达等多种能力。)

  解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg根据题意列方程组,得

  30x+15y=675 ①

  (30+12)x+(15+5)y=940 ②

  化简得

  2x+y=45

  2.1x+y=47

  解这个方程组得

  x=20

  y=5

  答:每只母牛和每只小牛1天各需用饲料为20kg和5kg,因此,饲养员李大叔对大牛的食量估计较准确,对小牛的食量估计偏高。

  (教学说明:学生在写解答过程时,教师重点关注学习有困难的学生,同时平时做事不认真规范的同学也是重点关注对象。完成之后针对出线的问题及时点评,使学生形成良好的学习习惯。)

  问题3 总结:列方程组解应用题的一般步骤及需要注意的问题。

  (设计说明:问题解决之后及时回顾反思,能更清晰的发现存在的问题及需要改进的地方,便于学生自查、自悟,找到适合自己的学习方法)

  审:弄清题目中的数量关系;

  设:设出两个未知数;

  列:分析题意,找出两个等量关系,根据等量关系列出方程组;

  解:解出方程组,求出未知数的值;

  验:检验求得的值是否正确和符合实际情形;

  答:写出答案(有时要分别作答)。

  活动3【练习】活动三:工厂锻炼——知识应用。

  (设计说明:通过不同形式的.情境设置,从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,形成初步技能。针对学习后进的学生降低了解方程组的难度,有利于这部分学生把主要精力用于学习列方程组的方法步骤上。)

  1、长18米的钢材,要锯成10段,而每段的长只能取“1米或2米”两种型号之一,小明估计2米的有3段,你们认为他估计的是否正确?为什么呢?

  那2米和1米的各应多少段?

  解:设2米的有x段,1米的有y段,根据题意,得

  x+y=10 ①

  2x+y=18 ②

  解得

  x=8

  y=2

  答:小明估计不准确,2米长的8段,1米长的2段。

  活动4【练习】活动四:大显身手——拓展提高。

  (说明:通过从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,巩固初步形成的技能。要求学生自主解决,以此检验学生掌握情况和本堂课的教学效果,为第二课时教学奠定基础。)

  有大小两种货车,2辆大车与3辆小车一次可以运货15.50吨,5辆大车与6辆小车一次可以运货35吨。求:3辆大车与5辆小车一次可以运货多少吨?

  活动5【活动】课堂小结

  1、本节课你学习了什么?(利用列二元一次方程组解决实际问题。)

  2、列二元一次方程组解决实际问题的主要步骤是什么?(审、设、列、解、验、答。)

  3、列二元一次方程组解决实际问题应注意哪些问题?

  (1)认真审题,用数学语言或式子表示题目中的数量关系。

  (2)解出方程组时要选择适当的方法,运算速度要快,准确度要高。

  (3)要按要求写出答案。

  活动6【导入】布置作业

  课外作业:p101复习巩固第1题、第2题、第3题。

  活动7【活动】课后反思

  在这节课之前的学习中,学生已经了解了一些用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题。因此,这一节课共安排了四个贴近实际问题的情境活动:活动一:逛公园,提起学生兴趣导入实际问题,数量关系较为简单;活动一:参观农场,帮助李大叔计算验证,数量关系的难度有所提高,活动中总结列二元一次方程组解决实际问题的主要步骤,同时含有关注农业生产的思想;活动三:工厂锻炼——知识应用和活动四:大显身手——拓展提高。主要通过从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,巩固初步形成的技能。

  这节课更为关注建立二元一次方程组数学模型的“探索”过程。它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据。所以我觉得设计此课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用。教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想。在教学中应发挥自主学习的积极性,引导学生先独立探究,再进行合作交流。

  在此教学过程中,要熟练掌握多媒体课件的使用流程,充分发挥图片资料创设情境和提高学生学习兴趣的作用。

二元一次方程组教案3

  教学目标

  1.会用加减法解一般地二元一次方程组。

  2.进一步理解解方程组的消元思想,渗透转化思想。

  3.增强克服困难的勇力,提高学习兴趣。

  教学重点

  把方程组变形后用加减法消元。

  教学难点

  根据方程组特点对方程组变形。

  教学过程

  一、复习引入

  用加减消元法解方程组。

  二、新课。

  1.思考如何解方程组(用加减法)。

  先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?

  能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

  学生解方程组。

  2.例1.解方程组

  思考:能否使两个方程中x(或y)的`系数相等(或互为相反数)呢?

  学生讨论,小组合作解方程组。

  提问:用加减消元法解方程组有哪些基本步骤?

  三、练习。

  1.P40练习题(3)、(5)、(6)。

  2.分别用加减法,代入法解方程组。

  四、小结。

  解二元一次方程组的加减法,代入法有何异同?

  五、作业。

  P33.习题2.2A组第2题(3)~(6)。

  B组第1题。

  选作:阅读信息时代小窗口,高斯消去法。

  后记:

  2.3二元一次方程组的应用(1)

二元一次方程组教案4

  教学目标

  1、弄懂二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解;

  2、学会用类比的方法迁移知识;体验二元一次方程组在处理实际问题中的优越性,感受数学的乐趣.

  教学难点弄懂二元一次方程组解的含义。

  知识重点二元一次方程、二元一次方程组及其解的含义。

  教学过程(师生活动)

  设计理念

  创设情境

  导入课题幻灯:古老的“鸡兔同笼问题”

  “今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”

  师:这是我国古代数学著作《孙子算经》中记载的数学名题.它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣.怎样来解答这个问题呢?

  学生思考自行解答,教师巡视.最后,在学生动手动脑的基础上,班级集体讨论给出各种解决方案.

  方案一:算术方法

  把兔子都看成鸡,则多出94-35×2=24只脚,每只兔子比鸡多出两只脚,故,由此可先求出兔子有24÷2=12只,

  进而鸡有35-12=23只.

  或类似的也可以先求鸡的数量.

  35×4-94=46,46÷2=23

  方案二:列一元一次方程解

  设有x只鸡,则有(35-x)只兔.根据题意,得

  2x十4(35-x)=94.

  (解方程略)

  教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么?以古老的数学名题引入,可以增强学生的民族自豪感,激发学好数学的感情

  能用方案本来解的学生算术功底比较好,应给予高度赞赏.

  方案二既是对一元一次方程的复习与巩固,又为二元一次方程组的引出做好铺垫在。

  分析问题(一)讨论二元一次方程、二元一次方程组的概念

  师:上面的问题可以用一元一次方程来解,还有其他方法吗?(若学生想不到,教师要引导学生,要求的是两个未知数,能否设两个未知数列方程求解呢?让学生自己设未知数,列方程)

  方案三:设有x只鸡,y只兔,依题意得

  x+y=35,①

  2x+4y=94.②

  针对学生列出的这两个方程,提出如下问题:

  (1)、你能给这两个方程起个名字吗?

  (2)为什么叫二元一次方程呢?

  (3)什么样的方程叫二元一次方程呢?

  结合学生的回答,教师板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程.

  师:在上面的问题中,鸡、兔的只数必须同时满足①②两个方程.把①②两个二元一次方程结合在一起,用花括号来连接.我们也给它起个名字,叫什么好呢?

  定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.

  (二)讨论二元一次方程、二元一次方程组的解的概念

  探究活动:满足x+y=35的值有哪些?请填入表中:

  教师启发:

  (1)若不考虑此方程与上面实际问题的联系,还可以取哪些值?

  (2)你能模仿一元一次方程的解给二元一次方程的解下定义吗?

  (3)它与一元一次方程的解有什么区别?

  定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为

  师:那么什么是二元一次方程组的解呢?

  学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程.即:既是方程①又是方程②的解.

  定义4:二元一次方程组的两个方程的公共解叫做二元一次方程组的解.

  比如:从方案一,我们知道,x=23,y=12使方程组中每一个方程成立.所以我们把x=23,y=12叫做

  的解记为:

  注意:二元一次方程组的解是成对出现的,用花括号来连接,表示“且”.

  议一议:将上述“鸡兔同笼”问题的三种方案进行优劣对比,你有哪些想法呢?

  引导学生利用一元一次方程进行知识的迁移与奚比,让学生用原有的认知结构去同化新知识,符合建构主义理念

  通过探究活动得出结论:

  1、二元一次方程的解是成对出现的;2、二元一次方程的解有无

  数多个.这与一元一次方程有显

  著的区别.

  通过对比,让学生体脸到从算术方法到代数方法是一种进步.而当我们遇到求多个未知量,而且数量关系较复杂时,列二元一次方程组比列一元一次方程容易,它大大减轻了我们的思维负担.

  巩固新知例1下列各对数值中是二元一次方程x+2y=2的解是()

  ABCD

  解法分析:

  将A、B,C,D中各对数值逐一代人方程检验是否满足方程,选A,B,C.

  变式:其中是二元一次方程组解是()

  解法分析:

  在例1的基础上,进一步检验A、B、C中各对值是否满足方程2x+y=-2,使学生明确认识到二元一次方程组的解必须同时满足两个方程.

  例2(教材102页练习)

  解答过程略

  本例先检验二元一次方程的解,再检脸二元一次方程组的解,符合从简单到复杂的认知规律.使学生更深刻地理解二元一次方程组的解的概念.

  目的在于培养分析等量关系并列方程组的能力;培养观察估算能力;使学生进一步熟悉二元一次方程组及其解的概

  小结提高在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行.

  本节课学习了哪些内容?你有哪些收获?

  (什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?)发挥学生主体意识,培养学生归纳小结的能力。

  布置作业1、必做题:教科书102页习题8.1第1、2题.

  2、选做题:教科书102页习题8.1第3题.

  3、备选题:

  (1)根据下列语句,列出二元一次方程:

  ①甲数的一半与乙数的的和为11

  ②甲数和乙数的2倍的差为17

  (2)方程x+2y=7在自然数范围内的解()

  A有无数个B有一个C有两个D有三个

  (3)若mx+y=1是关于x,y的二元一次方程,那么m

  的值应是()

  A.m≠OB.m=0C.m是正有理数D.m是负有理数

  (4)李平和张力从学校同时出发到郊区某公园游玩,两人从出发到回来所用的时间相同,但是,李平游玩的时间是张力骑车时间的4倍,而张力游玩的时间是李平骑车时间的5倍,请问他俩人中谁骑车的`速度快?

  不同层次的学生根据自身的需要选择不同的备用题,实现不同的人在数学上获得不同的发展的教学理念.

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  本课的设计是从提出“鸡兔同笼”的求解问题人手,激发学生的学习兴趣与民族自豪感,让学生经历从不同角度寻求不同的解决方法的过程,体现出解决问题策略的多样性,激发了学生的学习兴趣.以算术的方法衬托出方程解法的优越性,以列一元一次方程解法衬托出列二元一次方程组解法的优越性,更使学生感到二元一次方程组的引人顺理成章.

  本课内容是在学生已经掌握了一元一次方程的基础知识,初步具有提取数学信息、解决实际问题的能力后展开的.根据建构主义理念,学生完全有能力利用自己原有的知识去同化新知识,主动地将其纳人自己的知识体系中.所以本课的通篇整体设计,突出了一元一次方程的样板作用,让学生在类比中,主动迁移知识,建立起新的概念.使得基础知识和基本技能在学生头脑中留下较深刻的印象是很有必要的。

二元一次方程组教案5

  教学目标知识技能

  会根据行程问题、百分比问题情境及条件,列出方程组,解行程问题及百分比问题;2.使学生掌握运用方程组解决实际问题的一般步骤.

  数学思考

  让学生经历和体验列方程组解决实际问题的过程,进一步体会方程组是刻画现实世界的有效数学模型.

  问题解决

  通过列方程组解应用题,培养学生的数学应用能力,增强列方程解决实际问题的能力,进一步提高学生解二元一次方程组的技能.

  情感态度

  进一步丰富学生学习数学的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

  教学重点

  列二元一次方程组解行程问题和百分比问题.

  教学难点

  根据题意找出等量关系,列出方程.

  授课类型新授课课时

  教具多媒体课件

  (续表)

  教学活动

  教学步骤师生活动设计意图

  回顾问题1:解二元一次方程组的基本思想是________,解法有________.问题2:七年级上册我们学习了列一元一次方程解应用题,那么你还记得它的一般步骤吗?通过复习旧知,为本节课的学习做好铺垫,扫除知识障碍.

  活动一:创设情境导入新课

  【课堂引入】图1-3-3《孙子算经》大约产生于一千五百年前,现在传本的《孙子算经》共三卷,其中卷下第31题,可谓是后世“鸡兔同笼”题的始祖,书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”问题1:“上有三十五头”的意思是什么?“下有九十四足”呢?问题2:你能解决这个有趣的问题吗?以数学历史故事为背景,激发学生的爱国热情,感受数学在生活中的应用,吸引学生的注意力,激发学生的学习兴趣,同时为本课的学习做好铺垫.

  活动二:实践探究交流新知

  【探究1】鸡免同笼问题①一元一次方程解法(实物投影).解:设有鸡x只,则有兔(35-x)只.根据题意,得2x+4(35-x)=94.2x+140-4x=94.-2x=-46.x=23.35-x=12.答:有鸡23只,兔12只.②二元一次方程组解法(实物投影).解:设有鸡x只,兔y只.根据题意,得①×2,得2x+2y=70,③②-③,得2y=24,y=12.把y=12代入①,得x=23.答:有鸡23只,兔12只.你能比较两种解法的优劣吗?

  【探究2】行程问题情境:小琴去县城要经过外祖母家,第一天下午她从家走到外祖母家,第二天上午,她从外祖母家出发,匀速前进,走了2小时和5小时后,离她自己家的距离分别为13千米、25千米.你能算出她的速度吗?能算出她家与外祖母家相距多远吗?问题1:你能画线段表示本题的数量关系吗?问题2:填空:(用含s,v的代数式表示)设小琴的速度是v千米/时,她家与外祖母家相距s千米,第二天她走2小时的路程是________千米,此时她离家距离是________千米;她走5小时的路程是________千米,此时她离家的距离是________千米.

  【探究3】百分比问题情境:两块合金,一块含金95%,另一块含金80%,将它们与2克纯金熔合得到含金90.6%的新合金25克,计算原来两块合金的重量.问题1:设原来含金95%的合金为x克,含金80%的合金为y克.熔合后新合金中的含金量为25×90.6%,熔合前的总含金量为95%x+80%y+2,因此可以列出方程95%x+80%y+2=25×90.6%.问题2:两块合金的重量,加上2克纯金的重量等于新合金的重量,据此你能列出什么样的方程呢?引导学生体会两种解法的优点和不足,为学生建立方程组模型做铺垫.对于二元一次方程组的解法,如果学生学习存在困难,可以借助微视频讲解,或者教师设计表格,帮助学生分析等量关系.

  活动三:开放训练体现应用

  【应用举例】例1甲、乙两人都从A地到B地,甲步行,乙骑自行车,如果甲先走6千米乙再动身,则乙走0.75小时后恰好与甲同时到达B地;如果甲先走1小时,那么乙用0.5小时可追上甲,求两人的速度及AB两地的距离.变式训练1.两码头相距280千米,一船顺流航行需14小时,逆流航行需20小时,求船在静水中的速度和水流的速度.2.从小华家到姥姥家有一段上坡路和一段下坡路.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3 km,下坡每小时行5 km,她到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家.那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?例2革命老区百色某芒果种植基地,去年结余500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元.巩固用列二元一次方程组解应用题的思想,掌握列二元一次方程组解应用题的方法和步骤.

  【拓展提升】例3某铁路桥长1000 m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1 min,整列火车完全在桥上的时间共40 s.求火车的速度和长度.例4从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米.那么从甲地到乙地需54分,从乙地到甲地需42分,从甲地到乙地全程是多少千米?通过练习,使学生熟练掌握解决问题的方法,提升解决问题的.能力.

  活动四:课堂总结反思

  【当堂训练】1.甲、乙二人练习跑步,如果甲让乙先跑10米,甲跑5秒钟就可追上乙,如果甲让乙先跑2秒钟,那么甲跑4秒钟就追上乙.若设甲、乙每秒钟分别跑x米,y米,则列出方程组应为( )A. B.C. D.2.一轮船顺流航行的速度为a千米/时,逆流航行的速度为b千米/时,那么船在静水中的速度为多少千米/时( )A.a+b B.(a-b) C.(a+b) D.a-b3.甲、乙两人从相距36千米的两地相向而行,如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇.设甲每小时走x千米,乙每小时走y千米,可列出方程组________________.通过设置当堂训练,进一步巩固所学新知,同时检测学习效果,做到堂堂清.框架图式总结,更容易形成知识网络.

  【教学反思】①[授课流程反思]通过古代的“鸡兔同笼”问题,进行列二元一次方程组解决实际问题的训练,这样,一方面在列方程组的建模过程中,强化了方程思想,培养了学生列方程(组)解决实际问题的意识和应用能力.另一方面,将解方程组的技能训练与实际问题的解决融为一体,在实际问题的解决过程中,进一步提高学生解方程组的技能.

  ②[讲授效果反思]通过师生互动,让学生体会数学的实用性,掌握列方程组解应用题的思考方法及解题步骤.

  ③[师生互动反思]在建立方程思想的过程中采用了循序渐进的思路,由算术方法到一元一次方程再到二元一次方程组,遵循了学生的思维梯度,逐步建立起学生用二元一次方程组解应用题的思想,充分感受它的优点和思维的简化.

  ④[习题反思]好题题号__________________________________________错题题号__________________________________________ 反思,更进一步提升.

  活动四:课堂总结反思

二元一次方程组教案6

  7.2 一元二次方程组的解法

  ------第六课时

  教学目的

  1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用。

  2.通过应用题的教学使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性,体会列方程组往往比列一元一次方程容易。

  3.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力。

  重点、难点、关键

  1、重、难点:根据题意,列出二元一次方程组。

  2、关键:正确地找出应用题中的两个等量关系,并把它们列成方程。

  教学过程

  一、复习

  我们已学习了列一元一次方程解决实际问题,大家回忆列方程解应用题的步骤,其中关键步骤是什么?

  [审题;设未知数;列方程;解方程;检验并作答。关键是审题,寻找 出等量关系]

  在本节开头我们已借助列二元一次方程组解决了有2个未知数的实际问题。大家已初步体会到:对两个未知数的应用题列一次方程组往往比列一元一次方程要容易一些。

  二、新授

  例l:某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为20xx元,那么该公司出售这些加工后的蔬菜共可获利多少元?

  分析:解决这个问题的关键是先解答前一个问题,即先求出安排精加和粗加工的天数,如果我们用列方程组的办法来解答。

  可设应安排x天精加工,y加粗加工,那么要找出能反映整个题意的两个等量关系。引导学生寻找等量关系。

  (1)精加工天数与粗加工天数的.和等于15天。

  (2)精加工蔬菜的吨数与粗加工蔬菜的吨数和为140吨。

  指导学生列出方程。对于有困难的学生也可以列表帮助分析。

  例2:有大小两种货车,2辆大车与3辆小车一次可以运货15.50吨,5辆大车与6辆小车一次可以运货35吨。

  求:3辆大车与5辆小车一次可以运货多少吨?

  分析:要解决这个问题的关键是求每辆大车和每辆小车一次可运货多少吨?

  如果设一辆大车每次可以运货x吨,一辆小车每次可以运货y吨,那么能反映本题意的两个等量头条是什么?

  指导学生分析出等量关系。

  (1) 2辆大车一次运货+3辆小车一次运货=15. 5

  (2) 5辆大车一次运货+6辆小车一次运货=35

  根据题意,列出方程,并解答。教师指导。

  三、巩固练习

  教科书第34页练习l、2、3。

  第3题:首先让学生明白什么叫充分利用这船的载重量与容量,让学生找出两个等量关系。

  四、小结

  列二元一次方程组解应用题的步骤。

  1.审题,弄清题目中的数量关系,找出未知数,用x、y表示所要求的两个未知数。

  2.找到能表示应用题全部含义的两个等量关系。

  3.根据两个等量关系,列出方程组。

  4.解方程组。

  5.检验作答案。

  五、作业

  1.教科书第35页,习题7.2第2、3、4题。

二元一次方程组教案7

  一、教材分析

  1.教材的地位和作用

  本节课是华东师大版七年级数学下册第七章《二元一次方程组》中第二节的第四课时,它是在学习了代入消元法和加减消元法的基础上进行学习的。能够灵活熟练地掌握加减消元法,在解方程组时会更简便准确,也是为以后学习用待定系数法求一次函数、二次函数关系式打下了基础,特别是在联系实际,应用方程组解决问题方面,它会起到事半功倍的效果。

  2.教学目标

  (1)知识目标:进一步了解加减消元法,并能够熟练地运用这种方法解较为复杂的二元一次方程组。

  (2)能力目标:经历探索用“加减消元法”解二元一次方程组的过程,培养学生分析问题、解决问题的能力和创新意识。

  (3)情感目标:在自由探索与合作交流的过程中,不断让学生体验获得成功的喜悦,培养学生的合作精神,激发学生的学习热情,增强学生的自信心。

  3.教学重点难点

  教学重点:利用加减法解二元一次方程组。

  教学难点:二元一次方程组加减消元法的灵活应用。

  4.教学准备:多媒体、课件。

  二、学情分析

  我所任教的初一(2)班学生基础比较好,他们已经具备了一定的探索能力,也初步养成了合作交流的习惯。大多数学生的好胜心比较强,性格比较活泼,他们希望有展现自我才华的机会,但是对于七年级的乡镇中学的学生来说,他们独立分析问题的能力和灵活应用的能力还有待提高,很多时候还需要教师的点拨和引导。因此,我遵循学生的认识规律,由浅入深,适时引导,调动学生的积极性,并适当地给予表扬和鼓励,借此增强他们的自信心。

  三、教法与学法分析

  说教法:启发引导法,任务驱动法,情境教学法,演示法。

  说学法:合作探究法,观察比较法。

  四.教学设计

  (一)复习旧知

  1、解二元一次方程组的基本思想是什么?(消元)

  2、前面我们学过了哪些消元方法?(“单身”代入法、“朋友”加减法)

  下列两题可以用什么方法来求解?

  2x3y=16①

  X-y=3②3

  学生:观察、思考、讨论和交流,然后口述解题方法。

  教师:肯定、鼓励、板书。

  [设计意图:通过复习,让学生巩固了相关的旧知识,同时也为本节课做了铺垫]

  (二)探究新知

  1、情境导入

  师:我们用代入法来解题第一步是找“单身”,用加减法来解题第一步是找“朋友”,再用同减异加的法则进行解答,那么我们一起来看一下这道题目:

  问:这题能否用“单身”代入法或“朋友”加减法来求解?为什么?导入课题,板书课题。[设计意图:利用富有挑战性的问题,激发学生的好奇心和求知欲,可引发学生对问题的思考,并促进学生运用已有的知识去发现和获取新的知识]

  2、合作探究

  (让学生分组讨论交流,主动探索出解法,教师巡视指导并肯定和鼓励他们。)

  总结解题方法:如果一个方程组中x或y的系

  数不相同时,也就是说它们不是“朋友”时,先要想办法把“陌生人”变成“朋友”。

  方法一:将方程①变形后消去x。

  方法二:将方程②变形后消去y。

  让学生尝试着写出解题过程,请两位同学上台展示结果,集体订正。请做对的同学举手,全班同学都为自己鼓鼓掌,做对的表示给自己一次祝贺,暂时还没做对的表示给自己一次鼓励。[设计意图:让学生探索这道过渡性的题目,是遵循了学生的认识规律,由浅入深,为学习下面这道例题做好准备,同时通过变“陌生人”为“朋友”这一设想过程,也培养了学生的创新意识。]

  3、例题探索例5、解方程组:3x-4y=10①

  5x6y=42②

  师:这道题的x与y的系数有何特点?如何变成“朋友”?

  (让学生思考、分组讨论、交流,教师引导并板书解题过程。)

  [设计意图:让学生通过探讨,逐步发现可以用加减消元法去解较为复杂的二元一次方程组,也让他们再次体会了消元化归的数学思想,同时也培养了学生分析问题和解决问题的能力。在整个探讨的过程中也增强了学生的信心,学生有了发现的乐趣和成功的`喜悦后,会产生一种想表现自己的欲望。]

  4、试一试

  学生完成课本第30页的试一试,让学生用本节课的加减消元法和前面例2的代入消元法进行比较,看一看哪种方法更简便?

  (小组之间互相交流,写出解答过程,并请一些同学谈谈自己的看法,教师展示两种解题方法让学生们进行比较。)

  [设计意图:通过对比两种方法,使学生更清晰地掌握知识,当学生发现本节课的方法比例2的方法更简便时,学生会产生一种用本节课的知识去解题的冲动。]

  (三)反馈矫正

  解方程组:

  (给学生提供展现自我才华的机会,以前后两桌为一个小组进行讨论交流,此时可轻声播放一首钢琴曲,为学生创造一种轻松和谐的学习氛围)

  让两个同学上台解题,教师巡视,并每一个组选两名代表检查本组同学的完成情况和及时帮助有困难的同学,待全班同学完成后,让台上这两位同学试着当一下小老师,为全班同学讲解自己所做的题目,教师为评委,进行点评并总结,全班同学为他们鼓掌。

  [设计意图:由于学生人数较多,教师不能兼顾每个学生,所以让学生自做自讲,培养了学生综合能力的同时,也活跃了课堂气氛。选代表巡视并帮助有困难的同学,会让学生感受到老师对他们的重视,这样就能让他们主动参与到课堂中来。同时也培养了学生的合作精神和激发了学生的学习热情。]

  (四)课堂小结:学完这节课,大家有什么收获?请同学们谈谈对这节课的体会。

  [设计意图:加深对本节知识的理解和记忆,培养学生归纳、概括能力。]

  (五)布置作业:

  必做题:课本第31页的练习。

  选做题:

  ①

  (2)

  ②

  [设计意图:进一步巩固本节课知识的同时,也给学生留下思考的余地和空间,学生是带着问题走进课堂,现在又带着新的问题走出课堂。]

  五、板书设计:二元一次方程组的解法(四)

  找“朋友”——变“陌生人”为“朋友”——同减异加

  例题分析习题分析

  [设计意图:为了更好地突出本节课的教学重点和让学生更明确本节课的教学目标。]

二元一次方程组教案8

  教学目标

  1.使学生会用代入消元法解二元一次方程组;

  2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;

  3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想.

  教学重点和难点

  重点:用代入法解二元一次方程组.

  难点:代入消元法的基本思想.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?

  2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?

  3.上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?设农民有x只鸡,y只兔,则得到二元一次方程组

  对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考)教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140从而可解得,x=30,50-x=20,使问题得解.

  问题:从上面一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步引导学生找出它的解法) (1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?

  (4)能否由方程组中的方程②求解该问题呢?

  (5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解.

  由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y用(50-x)来代换,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30.

  将x=30代入方程③,得y=20.

  即鸡有30只,兔有20只.

  本节课,我们来学习二元一次方程组的解法.

  二、讲授新课例1解方程组

  分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程②中的y就可用方程①中的`表示y的代数式来代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.

  (本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为什么能代入?

  3.只求出一个未知数的值,方程组解完了吗?

  4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.例2解方程组

  分析:例1是用y=1-x直接代入②的.例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入.为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x).那么选用哪个方程变形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(问:能否代入②中?)

  2(8-3y)+5y=-21,-y=-37,所以y=37.

  (问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入③,得x= 8-3×37,所以x=-103.

  (本题可由一名学生口述,教师板书完成)

  三、课堂练习(投影)用代入法解下列方程组:

  四、师生共同小结

  在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.

  五、作业

  用代入法解下列方程组:

  5.x+3y=3x+2y=7.

二元一次方程组教案9

  教学目标

  1.会列二元一次方程组解简单的应用题并能检验结果的合理性。

  2.提高分析问题、解决问题的能力。

  3.体会数学的应用价值。

  教学重点

  根据实际问题列二元一次方程组。

  教学难点

  1.找实际问题中的`相等关系。

  2.彻底理解题意。

  教学过程

  一、引入。

  本节课我们继续学习用二元一次方程组解决简单实际问题。

  二、新课。

  例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?

  探究: 1. 你能画线段表示本题的数量关系吗?

  2.填空:(用含S、V的代数式表示)

  设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米20xx年-20xx学年七年级数学下册全册教案(人教版)教案。

  3.列方程组。

  4.解方程组。

  5.检验写出答案。

  讨论:本题是否还有其它解法?

  三、练习。

  1.建立方程模型。

  (1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度

  (2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?

  2.P38练习第2题。

  3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。

  四、小结。

  本节课你有何收获?

二元一次方程组教案10

  教学目标:

  1.会用加减消元法解二元一次方程组.

  2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.

  3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法.

  教学重点:

  加减消元法的`理解与掌握

  教学难点:

  加减消元法的灵活运用

  教学方法:

  引导探索法,学生讨论交流

  教学过程:

  一、情境创设

  买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?

  设苹果汁、橙汁单价为x元,y元.

  我们可以列出方程3x+2y=23

  5x+2y=33

  问:如何解这个方程组?

  二、探索活动

  活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?

  2、这些方法与代入消元法有何异同?

  3、这个方程组有何特点?

  解法一:3x+2y=23①

  5x+2y=33②

  由①式得③

  把③式代入②式

  33

  解这个方程得:y=4

  把y=4代入③式

  则

  所以原方程组的解是x=5

  y=4

  解法二:3x+2y=23①

  5x+2y=33②

  由①—②式:

  3x+2y-(5x+2y)=23-33

  3x-5x=-10

  解这个方程得:x=5

  把x=5代入①式,

  3×5+2y=23

  解这个方程得y=4

  所以原方程组的解是x=5

  y=4

  把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法.

  三、例题教学:

  例1.解方程组x+2y=1①

  3x-2y=5②

  解:①+②得,4x=6

  将代入①,得

  解这个方程得:

  所以原方程组的解是

  巩固练习(一):练一练1.(1)

  例2.解方程组5x-2y=4①

  2x-3y=-5②

  解:①×3,得

  15x-6y=12③

  ②×3,得

  4x-6y=-10④

  ③—④,得:

  11x=22

  解这个方程得x=2

  将x=2代入①,得

  5×2-2y=4

  解这个方程得:y=3

  所以原方程组的解是x=2

  y=3

  巩固练习(二):练一练1.(2)(3)(4)2.

  四、思维拓展

  解方程组:

  五、小结:

  1、掌握加减消元法解二元一次方程组

  2、灵活选用代入消元法和加减消元法解二元一次方程组

  六、作业

  习题10.31.(3)(4)2.

二元一次方程组教案11

  教学建议

  一、重点、难点分析

  本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

  解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

  二、知识结构

  三、教法建议

  1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

  这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

  2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的`解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

  3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

  一、素质教育目标

  (一)知识教学点

  1.掌握用代入法解二元一次方程组的步骤.

  2.熟练运用代入法解简单的二元一次方程组.

  (二)能力训练点

  1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.

  2.训练学生的运算技巧,养成检验的习惯.

  (三)德育渗透点

  消元,化未知为已知的数学思想.

  (四)美育渗透点

  通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.

  二、学法引导

  1.教学方法:引导发现法、练习法,尝试指导法.

  2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程当中始终应抓住消元的思想方法.

  三、重点、难点、疑点及解决办法

  (-)重点

  使学生会用代入法解二元一次方程组.

  (二)难点

  灵活运用代入法的技巧.

  (三)疑点

  如何“消元”,把“二元”转化为“一元”.

  (四)解决办法

  一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:

  四、课时安排

  一课时.

  五、教具学具准备

  电脑或投影仪、自制胶片.

  六、师生互动活动设计

  1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如 等.

  2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.

  3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.

  七、教学步骤

  (-)明确目标

  本节课我们将学习用代入法求二元一次方程组的解.

  (二)整体感知

  从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.

  (三)教学步骤

  1.创设情境,复习导入

  (1)已知方程 ,先用含 的代数式表示 ,再用含 的代数式表示 .并比较哪一种形式比较简单.

  (2)选择题:

  二元一次方程组 的解是

  A. B. C. D.

  第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料.

  通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.

  这样导入,可以激发学生的求知欲.

  2.探索新知,讲授新课

  香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

  学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.

  设买了香蕉 千克,那么苹果买了 千克,根据题意,得

  设买了香蕉 千克,买了苹果 千克,得

  上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到 ③,把方程②中的 转换成 ,也就是把方程③代入方程②,就可以得到 .这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出 了.

  解:由①得: ③

  把③代入②,得:

  ∴

  把 代入③,得:

  ∴

  解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.

  上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?

  学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.

  例1 解方程组

  (1)观察上面的方程组,应该如何消元?(把①代入②)

  (2)把①代入②后可消掉 ,得到关于 的一元一次方程,求出 .

  (3)求出 后代入哪个方程中求 比较简单?(①)

  学生活动:依次回答问题后,教师板书

  解:把①代入②,得

  ∴

  把 代入①,得

  ∴

  如何检验得到的结果是否正确?

  学生活动:口答检验.

  教师:要把所得结果分别代入原方程组的每一个方程中.

  给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.

  例2 解方程组

  要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中 的系数是1,比较简单.因此,可以先将方程②变形,用含 的代数式表示 ,再代入方程①求解.

  学生活动:尝试完成例2.

  教师巡视指导,发现并纠正学生的问题,把书写过程规范化.

  解:由②,得 ③

  把③代入①,得

  ∴

  ∴

  把 代入③,得

  ∴

  ∴

  检验后,师生共同讨论:

  (1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)

  (2)把 代入①或②可以求出 吗?(可以)代入③有什么好处?(运算简便)

  学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.

  教师板书:

  (1)变形( )

  (2)代入消元( )

  (3)解一元一次方程得( )

  (4)把 代入 求解

  练习:P13 1.(1)(2);P14 2.(1)(2).

  3.变式训练,培养能力

  ①由 可以得到用 表示 .

  ②在 中,当 时, ;当 时, ,则 ; .

  ③选择:若 是方程组 的解,则( )

  A. B. C. D.

  (四)总结、扩展

  1.解二元一次方程组的思想:

  2.用代入法解二元一次方程组的步骤.

  3.用代入法解二元一次方程组的技巧:①变形的技巧②代入的技巧.

  通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确.

  八、布置作业

  (一)必做题:P15 1.(2)(4),2.(1)(2)(3)(4).

  (二)选做题:P15 B组1.

二元一次方程组教案12

  教学目标

  1.使学生会用加减法解二元一次方程组。

  2.学生通过解决问题,了解代入法与加减法的共性及个性。

  重点:探寻用加减法解二元一次的方程组的进程。

  难点:消元转化的过程

  教学方法:讲练结合、探索交流课型新授课教具投影仪

  教师活动:学生活动

  情景设置:

  小明买了两份水果,一份是3kg苹果、2kg香蕉,共用去13.2元;另一份是2kg苹果、5kg香蕉,共用去19.8元。设苹果x元/kg,香蕉y元/kg.列出方程。

  新课讲解:

  列出方程组

  1.解方程组

  分析:关键的出方程〈1〉中的2y与方程〈2〉中的-2y互为相反数。想象出如果相加两个方程,会是什么结果?

  板演:

  解:〈1〉+〈2〉得:

  4x=6

  x=

  把x= 代入〈1〉得

  +2y=1

  解出这个方程,得

  y=

  所以原方程组的.解是

  2.解方程组

  通过议一议,让学生都有感觉消去含x或y的项都可以,但哪个更简便?

  解:〈1〉 3,得

  15x-6y=12 〈3〉

  〈2〉 2,得

  4x-6y=-10 〈4〉

  〈3〉-〈4〉,得

  11x=22

  x=2

  将x=2代入〈1〉,得

  5 2-2y=4

  y=3

  所以原方程组的解是

  加减消元法:把方程组的两个防城(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程。

  练一练:

  解方程组

  小结:

  加减消元法关键是如何消元,化二元为一元。

  先观察后确定消元。

  教学素材:

  A组题:解下列方程组:

  (1)

  (2)

  (3)

  (4)

  (5)

  B组题:运用转化的思想方法,你能解下面的三元一次方程组吗?

  (1)

  (2)

  学生读题,议一议

  学生想一想,如感到困难则看道简单题。

  由学生观察,如何求出x,y的值,学生再讨论。

  试一试。学生口述。

  老师板演

  得到一元一次方程

  学生再观察,议一议

  ①消去哪个未知数

  ②怎样消去?

  P112 1(1)(2)(3)(4)

  作业习题11.3 P112 1(3)(4) 3 , 4

二元一次方程组教案13

  教学目标:

  1使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用

  2通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性

  3体会列方程组比列一元一次方程容易

  4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力

  重点与难点:

  重点:能根据题意列二元一次方程组;根据题意找出等量关系;

  难点:正确发找出问题中的两个等量关系

  课前自主学习

  1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()

  2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:

  (1)方程两边表示的是()量

  (2)同类量的单位要()

  (3)方程两边的数值要相符。

  3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否( ),更重要的是要检验所求得的结果是否( )

  4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有( ),兔有( )

  新课探究

  看一看

   问题:

  1题中有哪些已知量?哪些未知量?

  2题中等量关系有哪些?

  3如何解这个应用题?

  本题的等量关系是(1)()

  (2)()

  解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg

  根据题意列方程,得

  解这个方程组得

  答:每只母牛和每只小牛1天各需用饲料为( )和( ),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。(“有”或“没有”)

  练一练:

  1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?

  2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?

  3、某工厂第一车间比第二车间人数的.少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?

  4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?

  小结

  用方程组解应用题的一般步骤是什么?

  8.3实际问题与二元一次方程组(2)

  教学目标:

  1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;

  2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;

  3、学会开放性地寻求设计方案,培养分析问题,解决问题的能力

  重点与难点:

  重点:能根据题意列二元一次方程组;根据题意找出等量关系;

  难点:正确发找出问题中的两个等量关系

  课前自主学习

  1.甲乙两人的年收入之比为4:3,支出之比为8:5,一年间两人各存了5000元(两人剩余的钱都存入了银行),则甲乙两人的年收入分别为()元和()元。

  2.在一堆球中,篮球与排球之比为赞助单位又送来篮球队10个排球10个,这时篮球与排球的数量之比为27:40,则原有篮球()个,排球()个。

  3.现在长为18米的钢材,要据成10段,每段长只能为1米或2米,则这个问题中的等量关系是(1)1米的段数+()=10(2)1米的钢材总长+()=18

二元一次方程组教案14

  一、内容和内容解析

  1.内容

  代入消元法解二元一次方程组

  2.内容解析

  二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,

  在平面直角坐标系中求两直线交点坐标等.

  解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。

  本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元.

  二、目标和目标解析

  1.教学目标

  (1)会用代入消元法解一些简单的二元一次方程组

  (2)理解解二元一次方程组的思路是消元,体会化归思想

  2.教学目标解析

  (1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,

  (2)要让学生经历探究的过程.体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想

  三、教学问题诊断分析

  1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路

  2.解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。

  本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。

  四、教学过程设计

  1.创设情境,提出问题

  问题1

  篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

  师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

  x=6,则胜6场,负4场

  教师追问:你能根据问题中的等量关系列出二元一次方程组吗?

  师生活动:学生回答:能.设胜x场,负y场.根据题意,得

  我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4.显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?

  这节课我们就来探究如何解二元一次方程组.

  设计意图:用引言的.问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫.

  问题2 对比方程和方程组,你能发现它们之间的关系吗?

  师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。

  师生活动:根据上面分析,你们会解这个方程组了吗?

  学生回答:会.

  由①,得y=10-x ③

  把③代入②,得2x+(10-x)=16 x=6

  设计意图:共同探究,体会消元的过程.

  问题3 教师追问:你能把③代入①吗?试一试?

  师生活动:学生回答:不能,通过尝试,x抵消了.

  设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点.

  教师追问:你能求y的值吗?

  师生活动:学生回答:把x=6代入③得y=4

  教师追问:还能代入别的方程吗?

  学生回答:能,但是没有代入③简便

  教师追问:你能写出这个方程组的解,并给出问题的答案吗?

  学生回答:x=6,y=4,这个队胜6场,负4场

  设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。

  师生活动:先让学生独立思考,再追问.在这种解法中,哪一步最关键?为什么?

  学生回答:代入这一步

  教师总结:这种方法叫代入消元法。

  教师追问:你能先消x吗?

  学生纷纷动手完成。

  设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫.

  2. 应用新知,拓展思维

  例 用代入法解二元一次方程组

  师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。

  设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法.

  3.加深认识,巩固提高

  练习 用代入法解二元一次方程组

  设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组.

  4.归纳总结,知识升华

  师生活动,共同回顾本节课的学习过程,并回答以下问题

  1. 代入消元法解二元一次方程组有哪些步骤?

  2. 解二元一次方程组的基本思路是什么?

  3.在探究解法的过程中用到了哪些思想方法?

  4.你还有哪些收获?

  设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.

  5. 布置作业

  教科书第93页第2题

  五、目标检测设计

  用代入法解下列二元一次方程组

  设计意图:考查学生对代入法解二元一次方程组的掌握情况.

二元一次方程组教案15

  教学目标

  1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。

  2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。

  3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。

  教学重点

  1.列二元一次方程组解简单问题。

  2.彻底理解题意

  教学难点

  找等量关系列二元一次方程组。

  教学过程

  一、情境引入。

  小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的`钱,要小军猜。聪明的同学们,小军能猜出来吗?

  二、建立模型。

  1.怎样设未知数?

  2.找本题等量关系?从哪句话中找到的?

  3.列方程组。

  4.解方程组。

  5.检验写答案。

  思考:怎样用一元一次方程求解?

  比较用一元一次方程求解,用二元一次方程组求解谁更容易?

  三、练习。

  1.根据问题建立二元一次方程组。

  (1)甲、乙两数和是40差是6,求这两数。

  (2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。

  (3)已知关于求x、y的方程,

  是二元一次方程。求a、b的值。

  2.P38练习第1题。

  四、小结。

  小组讨论:列二元一次方程组解应用题有哪些基本步骤?

  五、作业。

  P42。习题2.3A组第1题。

  后记:

  2.3二元一次方程组的应用(2)