美文日 - 美文欣赏阅读,用心与您分享。

首页范文写作正文

分数与除法教案

教案2024-03-31 20:57:08

  作为一位兢兢业业的人民教师,有必要进行细致的教案准备工作,教案是教学活动的总的组织纲领和行动方案。我们该怎么去写教案呢?下面是小编帮大家整理的分数与除法教案,希望对大家有所帮助。

分数与除法教案1

  教学内容:

  苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。

  教学目标:

  使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个

  数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。

  教学重点:

  列方程解答“已知一个数的几分之几是多少,求这个数”的简单实际问题。

  教学难点:

  理解列方程解决简单分数实际问题的思路。

  教学过程:

  一、导入

  1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?

  出示:小瓶的果汁是大瓶的。

  这句话表示什么?你能说出等量关系式吗?

  如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。

  如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?

  2、揭示课题:简单的分数除法应用题

  二、教学例5

  1、出示例5,学生读题。

  提问:你想怎么解决这个问题?

  2、讨论交流:你是怎么想、怎么算的?

  (1)用除法计算。

  引导讨论:为什么可以用除法计算?依据是什么?

  (2)用方程解答。

  讨论:用方程解答是怎么想的,依据是什么?

  让学生在教材中完成解方程的过程,并指名板演。

  3、引导检验:900是不是原方程的解呢,怎么检验?

  交流检验的方法。

  4、教学“试一试”

  (1)出示题目,让学生读题理解题目意思。

  (2)讨论:这里中的两个分数分别表示什么意思?

  这题中的数量关系式是什么?

  (3)这题可以怎么解答,自己独立完成,并指名板演。

  (4)交流:你是怎么解决这个问题的?

  4、小结。

  三、练习

  1、做“练一练”。

  各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。

  2、做练习十二第1题。

  (1)读题,画出题目中的关键句。

  (2)学生说题意

  (3)引导学生说出并在书上写出数量关系式。

  (4)独立解答,并指名板演。

  (5)集体评议并校正。

  3、做练一练第2题。

  启发:你是怎样分析数量关系的?为什么要列方程解答?

  3、小结解题策略。

  四、作业:练习十二第1、3、4题。

  板书设计:(略)

分数与除法教案2

  单元目标:

  1.理解并掌握分数除法的计算方法,会进行分数除法计算。

  2.会解答已知一个数的几分之几是多少求这个数的实际问题。

  3.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

  4.能运用比的知识解决有关的实际问题。

  单元重点:

  理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题

  单元难点:

  理解分数除法的算理,列方程解答分数除法问题

  第一课时:分数除法的意义和分数除以整数

  教学目标:

  1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

  2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

  3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

  教学重点:

  使学生理解算理,正确总结、应用计算法则。

  教学难点:

  使学生理解整数除以分数的算理。

  教具准备:多媒体课件

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数除法的意义

  (1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

  (2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

  2、口算下面各题

  ×3 × ×

  × ×6 ×

  二、新知探究

  (一)、教学例1

  1、课件出示自学提纲:

  (1)出示插图及乘法应用题,学生列式计算。

  (2)学生把这道乘法应用题改编成两道除法应用题,并解答。

  (3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

  2、学生自学后小组间交流

  3、全班汇报:

  100×3=300(克)

  A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

  B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

  ×3= (千克) ÷3= (千克) ÷3=3(盒)

  4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

  分数除法的意义与整数除法相同,都是已知两个因数的积与其

  中一个因数,求另个一个因数。都是乘法的逆运算。

  (二)、巩固分数除法意义的练习:P28“做一做”

  (三)、教学例2

  (1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

  (2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

  (3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

  A、 ÷2= =,每份就是2个。

  B、 ÷2= × =,每份就是的。

  (4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

  4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

  三、当堂测评(课件出示)

  1、计算

  ÷3 ÷3 ÷20 ÷5 ÷10 ÷6

  2、解决问题

  (1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

  (2)、正方形的周长是4/5米,它的边长是多少米?

  学生独立完成。

  教师讲评,小组间批阅。

  四、课堂总结

  1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

  2、谁来把这两部分内容说一说?

  教学后记

  第二课时:一个数除以分数

  教学目标:

  1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

  2、培养学生的语言表达能力和抽象概括能力。

  3、培养学生良好的计算习惯。

  教学重点:

  总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

  教学难点:

  利用法则正确、迅速地进行计算,并能解决一些实际问题。

  教具准备:多媒体课件、实物投影。

  教学过程:

  一、旧知铺垫(课件出示)

  1、计算下面,直接写出得数

  ×4 ×3 ×2 ×6

  ÷4 ÷3 ÷2 ÷6

  2、列式,说清数量关系

  小明2小时走了6 km,平均每小时走多少千米?

  (速度=路程÷时间)

  二、新知探究

  (一)、例3,

  1、实物投影呈现例题情景图。

  理解题意,列出算式:2÷ ÷

  2、探索整数除以分数的计算方法

  (1)2÷如何计算?引导学生结合线段图进行理解。

  (2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

  (3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

  (4)根据学生的回答把线段图补充完整,并板书出过程。

  先求小时走了多少千米,也就是求2个,算式:2×

  再求3个小时走了多少千米,算式:2× ×3

  (5)综合整个计算过程:2÷ =2× ×3=2×

  (二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

  (三)、计算÷,探索分数除以分数的计算方法

  1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

  ÷ = × =2(km)

  2、学生用自己的方法来验证结果是否正确。

  3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

  三、当堂测评

  1、P31“做一做”的第1、2题。

  2、练习八第2、4题。

  学生独立完成,教师巡回指点,帮助学困生度过难关。

  小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

  四、课堂总结

  1、这节课你们有什么收获呢?

  2、在这节课上你觉得自己表现得怎样?

  设计意图:

  这两节课的教学我从以下着手:

  1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

  2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

  教学后记

  第三课时:练习课

  第四课时:分数混合运算

  教学目标:

  1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

  2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

  3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

  4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

  教学重点:确定运算顺序再进行计算。

  教学难点:明确混合运算的顺序。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数混合运算的运算顺序

  (1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

  (2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

  (3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

  2、说出下面各题的运算顺序。

  (1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4

  (3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)

  3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

  二、新知探究

  1、教师课件出示例4

  2、课件出示自学提纲:

  (1)例4中的哪些条件和复习中的3相同?问题相同吗?

  (2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

  (3)尝试说说自己的解题思路并解答。

  3、学生根据提纲尝试解题。

  4、全班汇报

  (1)根据学生的回答,归纳出两种思路:

  A、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。

  B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

  (2)说说运算顺序,再进行计算。

  (1)计算1/5÷(2/3+1/5)×15

  让个别学生说出运算顺序并计算题目的得数。

  教师巡回指点,搜集存在问题。

  教师黑板出示问题,学生上台改正,并说明理由。

  (2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

  三、当堂测评

  练习九第1、2、3题:

  注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

  楼楼板到地面的高度实际上只有5层楼的高度。

  学生独立完成教师点评,解决疑难。

  学生相互得分,评选优胜小组。

  四、课堂小结

  这节课有什么收获?说一说。

  还有什么不懂的?提出来小组内解决。

  设计意图

  1、在课初始,我便从复习整数及小数的运算顺序入手,

  重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

  现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

  习加强计算的训练。

  2、当堂测评题将学生置于提高之处,联系实际生活解决问

  题,让学生体会到数学知识的广泛性和严谨性

  教学后记

  第五课时:练习课

  已知一个数的几分之几是多少求这个数的应用题

  教学目标:

  1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重点:

  弄清单位“1”的量,会分析题中的数量关系。

  教学难点:

  分数除法应用题的特点及解题思路和解题方法。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、根据题意列出关系式。

  (1)一个数的3/4等于12.

  (2)男生人数的11/12等于220人。

  (3)甲数的5/8是40.

  (4)乙数的4/5刚好是1/6.

  2、解决问题

  根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?

  (1)看看题目中所给的三个条件是否都用得上,并说说为什么。

  选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

  小明的体重× =体内水分的重量

  (2)指名口头列式计算。

  二、新知探究

  (一)教学例1.

  1、课件出示自学提纲:

  (1)这一例题和复习中的题有什么不同和相同呢?想一想。

  (2)有几个问题?都和哪些条件有关?

  (3)读题、理解题意,并画出线段图来表示题意

  (4)独立解决第一个问题。

  2、全班汇报

  (1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

  小明的体重× =体内水分的重量

  (2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

  (3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

  (4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

  3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?

  (1)启发学生找关键句,确定单位“1”。

  (2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

  (3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

  爸爸的体重× =小明的体重

  ①方程解:解:设爸爸的体重是χ千克。

  χ= 35

  χ=35÷

  χ=75

  ②算术解:35÷ =75(千克)

  4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

  三、当堂测评(课件出示)

  1、根据题意列出算式,不必计算(每题15分)。

  (1)一个数的2/5是40,这个数是多少?

  (2)一个数的3/8是24,这个数是多少?

  (3)甲数是100,占乙数的4/5,乙数是多少?

  (4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

  2、解决问题(40分)。

  某校有女生160人,正好占男生的8/9,男生有多少人?

  学生独立完成,教师巡回指点,注重学困生的提高。

  小组内订正、互评,做到兵强兵。

  四、课堂总结

  这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

  设计意图:

  本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

  教学后记:

分数与除法教案3

  教学目标:

  1、通过本课的复习使学生能很好的掌握本单元所学的知识,能正确 的计算分数的除法。

  2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。

  3、能很好的计算分数乘除混合运算的题目。

  教学重点:分数除法的计算的方法。

  难点:分数乘除的混合运算的运算的计算的正确率

  教学过程:

  一、复习回顾

  小组讨论

  1、怎么样来计算分数除法

  请学生进行讨论,讨论好以后 再请学生进行回 答。

  2、教师强调:在计算分数除法的时候我们除以一个数等于乘以这个数的倒数。

  请生说说你是怎么来理解这句话的。

  二、进行练习

  1、做课本66的1

  请学生直接的在课本上进行口算,口算的时候让学生要看清题目,注意区分乘和除。

  学生做好了以后再请学生进行口答。

  对于做错的题目,让请学生自己来分析下错误的原因是什么?

  2、做第2题

  前面4题可以让学生独立的做,做好了以后再请学生说说计算的方法是怎么样的?

  并请学生上黑板进行板演。

  进行集体订正。

  3、对比练习

  1) 城东小学六年级有学生450人,占全校人数的2/9,全校有学生多少人?

  2)城东小学有学生450人,六年级占其中的2/9,六年级有学生多少人?

  4、做66页第4题

  请学生独立的做,做好了以后请学生分析一下说说你是怎么想的?

  做好以后请学生进行板演

  5、根据方程或算式,将应用题补充完整。

  1)、120×3/8

  ( ),苹果树的棵数是梨树的3/8,( )?

  2)、3/8x=120

  ( ),苹果树的棵数是梨树的3/8,( )?

  3)、120+120×3/8

  ( ),苹果树的棵数是梨树的3/8,( )?

  请学生独立的做,做好了以后请学生说说是怎么想的?

  三、布置作业

  做66页第5~7题

  1、在计算练习中,可增加以下练习,帮助学生进一步体会分数计算中的一些规律。

  在( )里填上“>”“<”“=”

  4/7×1/3( )4/7 4/7×4/3( )4/7

  4/7÷1/3( )4/7 4/7÷4/3( )4/7

  4/7÷1( )4/7 4/7×1( )4/7

  先让学生独立思考,再说说判断的结果和理由。

  2、在解决实际问题时,要紧紧围绕数量关系的分析学生掌握分数应用题的解答方法。

  3、加强对比有利于学生辨析什么情况下列算式解答,什么情况下列方程式方便。

  课后反思:

  通过今天的复习,部分学生已初步感受到单位"1"的量未知,列方程解答,实际也可以用分数除法解答。于是我及时引导,再次让学生体会,从而理解乘除之间互逆关系。

  在今天学习第4题的练习中,结合具体题目,补充了工作效率、工作时间、工作总量三个数量之间的关系,并结合学生体会到的分数乘除法之间的关系再次体会到列方程解与分数除法解的优劣。

  在处理第7题的练习中,学生对变化着的“1”不注意,部分学生将国土面积乘5/2等于草地面积。归其原因还是没有掌握分数应用题数量关系。

分数与除法教案4

  教学目标

  1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学:难点:分数除法应用题的特点及解题思路和解题方法。

  教学重难点

  教学重点:弄清单位“1”的量,会分析题中的数量关系。

  教学:难点:分数除法应用题的特点及解题思路和解题方法。

  教学过程

  一、复习

  出示复习题:

  1、下面各题中应该把哪个量看作单位“1”?

  2、用方程解下列各题。

  3、根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?

  让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

  选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

  小明的体重×4/5=体内水分的重量。

  4、指名口头列式计算。课件出示。

  二、新授

  1、教学例1

  根据测定,成人体内的水分约占体重的2/3,而儿童

  体内的水分约占体重的4/5,小明体内有28千克水分,

  他的体重是爸爸体重的7/15,小明的体重是多少千克?

  爸爸的体重是多少千克?

  例1的第一个问题:小明的体重是多少千克?

  (1)读题、理解题意,并画出线段图来表示题意:

  (2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×4/5=体内水分的重量

  (3)这道题与复习题相比有什么相同点和不同点?

  (相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重?千克水分28千克已知条件和问题变了)

  (4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)

  (5)启发学生应用算术解来解答应用题。

  先在小组内独立解答。

  课件演示计算的算式。

  (根据数量关系式:小明的体重×4/5=体内水分的重量,

  反过来,体内水分的重量÷4/5=小明的体重)。

  2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克?

  (1)启发学生找到分率句,确定单位“1”。

  (2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

  (3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)

  爸爸:

  小明:

  根据数量关系式:爸爸的体重×7/15=小明的体重

  小明的体重÷7/15=爸爸的体重

  ①解方程:解:设爸爸的体重是χ千克。

  7/15χ=35

  χ=35÷7/15

  χ=75

  ②算术解:35÷7/15=75(千克)

  课件演示计算的算式。

  3、用方程解应用题应注意哪些问题

  首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间

  的等量关系,再确定设哪个量为χ,并列出方程.

  4、巩固练习:P38“做一做”课件出示:

  学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)

  三、巩固应用

  1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页?

  (先分析数量关系式,然后确定单位“1”,最后再进行解答。)

  2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质?

  (注意引导学生发现250ml的鲜牛奶是多余条件)

  3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少?

  (引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)

  4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元?

  独立完成后订正。

  四、课堂总结

  这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。

分数与除法教案5

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一:复习

  1、根据条件说出把哪个数量看作单位1。

  (1)棉田的面积占全村耕地面积的2/5。

  (2)小军的体重是爸爸体重的3/8。

  (3)故事书的本数占图书总数的1/3。

  (4)汽车速度相当于飞机速度的1/5。

  2、找单位1,并说出数量关系式。

  (1)白兔的只数占总只数的2/5。

  (2)甲数正好是乙数的3/8。

  (3)男生人数的1/3恰好和女生同样多。

  3、一个儿童体重35千克,他体内所含水分占体重的4/5,他体内的水分有多少千克?

  集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)

  二、新授

  1、教学例1。一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童体重有多少千克?

  (1)指名读题,说出已知条件和问题。

  (2)共同画图表示题中的条件和问题。

  (3)分析数量关系式

  提问:根据水份占体重的4/5,可以得到什么数量关系式?

  学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。

  根据学生的回答,把线段图进一步完善。

  提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)

  让学生试列方程,并说出方程表示的意义。

  让学生把方程解完,并写上答案。

  出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的体重乘4/5,看看是不是等于水分的千克数。)

  2、比较。

  提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?

  根据学生的回答,帮助学生整理出:

  (1)看作单位1的数量相同,数量关系式相同。

  (2)复习题单位1的量已知,用乘法计算;

  例1单位1的量未知,可以用方程解答。

  (3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。

  三、巩固练习

  1、做书P34做一做

  要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。

  2、做练习九第1题。

  先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。

  四、小测:(略)

  五、小结:这节课我们研究了什么问题?解答分数应用题的关键是什么?单位1已知用什么方法解答?未知呢?

  六、布置作业

  练习九第2题

  教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的目的。

  再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的'过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。

  小测:列出数量关系式,并列式解答。

  1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

  2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

  小测:列出数量关系式,并列式解答。

  1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

  2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

分数与除法教案6

  教学目标:

  1.知识与技能:结合具体事例,经历画线段图分析数量关系、找等量关系并用方程解答简单分数除法问题的过程。

  2.过程与方法:能用方程解答"已知一个数的几分之几是多少,求这个数"的实际问题。

  3.情感与态度:认识到许多分数除法问题可以借助方程来解决,能够表达解决问题的过程。

  教学重点:

  学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。

  教学难点:

  学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。

  教学准备:

  小黑板

  教学过程:

  一、复习

  1.口算

  15 x=5 34 x=6 3x=910

  5x=1011 12 x=89 23 x=67

  2.口答下列各题的数量关系式。

  ⑴某数的35 是36。

  ⑵全厂人数的58 是210人。

  ⑶完成了300个,刚好是计划的14 。

  ⑷一个数的3倍是1225 。

  3.解答:小营村全村有耕地75公顷,其中棉田占35 。 小营村的棉田有多少公顷?

  生练习,提问:这道题为什么用乘法计算?把谁看作单位"1"?

  二、探究新知

  师:请看黑板,同学们开联欢会布置会场,用的红气球占总数的49 ,一共用了多少个气球?

  师:指名读题,谁能找出这道题的已知条件和所求问题。

  师:题中"总数的49 "这个条件你是怎样理解的?

  师:边画图边理解

  师:请同学们看图说说题里的已知条件和问题。

  师:观察图示,你发现数量间有怎样的相等关系。

  师:你是根据什么列出等量关系的?(同桌讨论)

  师:在这个等量关系中,哪个量是已知的?哪个量是未知的?

  师:未知的可以设为X,根据等量关系我们可以用列方程的方法来解答,同学们自己能解答吗?(指名板演,其他自练,并提醒学生做完要检验。)

  师:做完的同学把书打开72页,对照例题检查自己做对了吗?谁愿意说说你是怎样检验的?

  师:同学们是用把原方程的解代入原方程看方程左右两边是否相等的方法检验的,其实还可以根据题意进行检验,我们可以计算28是不是占X的 49 ,如果是就说明你的方程不但列对了,而且解对了。如果不是就说明有错误出现,好及时改正。

  师:回顾例题的学习过程,你认为解题关键是什么?

  师:同学们真聪明!自己不但能学懂知识,还能学以致用,解决实际问题。

  师:其实我们今天所学的知识不光能解决有关联欢会的问题,还能解决生活中的许多实际问题,比如说"十、一假期,老师上街买了一套衣服,裤子75元,是上衣价钱的23 ,"应用今天所学的知识,你能求出一件上衣多少钱吗?(能)

  指名板演,其他自练。

  三、巩固练习

  试一试

  四、全课

  师:求单位"1"的几分之几用乘法,已知一个数的几分之几是多少,求这个数用除法。

  五、作业

  教学后记:

  找准单位"1"的量,掌握题中的数量关系是解答分数问题的关键,教学例题时。我先让学生找单位,写出数量关系,让他们根据数量关系列方程,掌握还不错。

分数与除法教案7

  一、教学内容

  苏教版小学数学第十一册第33—38页“分数除法”例1—例4。

  二、简要分析

  本节课是学生刚刚学过“分数乘法”和“倒数”这一概念的基础上进行教学。学生已有的知识还有“商不变的规律”。本课例就是教者引导学生运用已有的知识或经验,去探索获取新知识,形成和发展新知识结构,同时发展学生的智力和能力。大胆的改革教材,进行知识的组块教学,勇于实践,缩短“分数除法计算法则”教时的一个例子。

  三、教学过程

  (一)复习旧知,作好铺垫,导入新课。

  1、说出下列各数的倒数(出示卡片)

  2、6、—、—、0.5、 1—、 0.7

  2、用投影打出:下面两题简便计算的根据是什么?

  12÷25=(12×4)÷(25×4)=48÷100=0.48

  11÷125=(11×8)÷(125×8)=88÷1000=0.088

  [简析:商不变规律的应用,为后面学习新知作出充分准备。]

  3、用投影分A、B组分别出示:下列算式中,哪些算式你一眼就能看了它的商?

  A组:78÷10.35÷1136÷721.8÷9

  B组:—÷1—÷1—÷218÷——÷1

  —÷——÷—4—÷2——÷0.7

  [简析:这两组有趣习题的练习,有利于调动学生的学习激情,学生很快说出除数是1的算式,一眼就看出商是几。当学生看出除数为1时,计算就最为简便。(这里为学习新知作了重要的铺垫)一看就知道商是几(即被除数)]

  师:接着问B组题中是些什么算式,生答师板书“分数除法”算,今天就来研究“分数除法”的计算法则。

  (二)指导探索,在新旧知识的衔接上教师加以点拔导学。

  (1)请大家列出B组算式中除数不是1的算式。

  —÷218÷——÷——÷—

  4—÷2— —÷0.7

  (2)先来研究前四道算式,这四道算式中除数都不是1,你能想办法将这除数变为1,而商不变吗?

  [评析:此时学生的学习情绪积极性高,纷纷欲试,是学习新知识的最佳时机。]

  师:下面分学习小组进行讨论。

  (3)交流。

  学生甲:以—÷2为例,除数是2,将2×—除数变为1,要使商不变,被除数—也要乘以—。

  学生乙:以18÷—为例,除数是—,将—×—除数变为1,要使商不变,被除数18也要乘以—。

  [评析:此题是倒数的概念和商不变规律同时应用,运用旧知,用得巧。]

  (教师根据学生的回答,作好下列板书)

  —÷2=(—×—)÷(2×—)18÷—=(18×—)÷(—×—)

  =—×—÷1=18×—÷1

  =—×— =18×—

  (三)引导学生观察、比较、类推,得出结论。

  师问:这里我们是应用的什么进行变化的?(商不变的规律)

  (教者把上面板书用虚线框起)让学生观察比较。

  —÷2=—×—18÷—=18×—

  问:这两个等式的前后发生了什么变化?他们变化有什么共同点?(分学习小组讨论)

  生汇报:除号变成了乘号,除数变成了它的倒数。

  分数除法算式变成了分数乘法算式。

  师小结:你们观察得真仔细,将分数除法转化为分数乘法来做,今后到中学里学习还可用到“转化”这一重要思想把未知的转化成已知,去探索知识,为人类服务。

  练习:用复合投影片打出:

  将下列除法算式转化为乘法算式(学生边回答边出示下排转化的式子)

  —÷— —÷— —÷612÷—

  =—×—=—×4 =—×—=12×—

  [评析:抓住时机,练重点难点,强化新知。]

  6、讨论、比较、类推,概括方法。

  问:在刚才的练习中,你认为有什么规律?

  (生答:被除数不变,除号变成了乘号,同时除数变成了它的倒数。)

  师问:如果这些被除数作为甲数,除数作为乙数,你能用一句话概括一下它的规律吗?

  生答师板书:甲数除以乙数,等于甲数乘以乙数的倒数。这就是分数除法的计算法则。(看书第38页)

  引导学生讨论:为什么乙数要加上零除外?

  (四)利用法则,练习重点,巩固新知。

  1、—÷3=—×———=12÷—=12×———=

  —÷—=—×———=—÷—=———()———

  2、计算。(并指名板书,注意书写格式)

  —÷3—÷——÷36÷—

  3÷——÷——÷— —÷—

  3、改错。

  (1)9÷—=9÷—=—=10—(2)—÷5=—×—=—

  (3)—÷—=—×—=—

  4、判断。

  (1)1÷—=—÷1(2)a÷b=a×—

  [评析:改错题、判断题的设计,进一步强化了计算法则。]

  (五)作业练习,熟记法则。

  1、练习八第3题的前4题

  第6题的前4题

  2、校对答案。(说出过程,强化法则的应用)

  思考题:计算(1)4—÷2—(2)—÷0.7

  [评析:这里是知识结构的完整,知识点的引伸。]

  (六)总结。

  1、今天我们一起研究了什么内容?

  2、你有哪些收获?

  3、计算过程中应注意什么问题?

  四、教后评析

  本节课教者利用旧知识的学习作铺垫,运用知识的迁移规律,对分数除法法则进行整体教学,利用观察、比较、类推等方法缩短了教学课时数,打破了原教材的束缚,学生的学习积极性高,发展了学生的智力,受到良好的教学效果。

  1、恰当地调整了教材,进行知识的组块教学,挖掘了教材(知识)本身的潜在因素,利用旧知,通过师生的对话、教师的点拔,为学生主动探索、自己发现方法概括法则创造条件,有利于学生掌握、研究教学问题的思维方法,打破了一例一题传统的教学模式,体现了现代小学数学教育的特点。

  2、抓住知识间的内在联系,在知识连接点衔接处精心设计习题、提问,让学生主动探索问题。

  3、重视学生素质的培养,注重面向全体学生、全员参与,注重发展学生的思维,培养能力和方法指导,从铺垫(全员练习)→新课(转化除数、变除为乘、试做、比较、类推、概括法则)→巩固新知(填空、计算、改错、判断)→作业练习→思考题引伸拓展→总结整个过程,充分体现了“以教师为主导、学生为主体、训练为主线”的教学原则。

分数与除法教案8

  第课时分数与除法

  1、通过学习,使学生进一步理解分数的意义,知道分数还可以表示除法的商,被除数相当于分数的分子,除数相当于分数的分母,学生能够用分数表示整数除法的商。

  2、通过学习,使学生进一步理解分数的意义,知道分数还可以表示数量,理解并掌握1个的几分之几就是几分之几个,几个的几分之一就是几分之几个。

  3、能运用分数与除法的关系解决相关的问题。

  4、让学生经历分数与除法的关系的探究过程,经历求一个数是另一个数的几分之几的解答过程。

  【重点】理解和掌握分数与除法的关系。

  【难点】理解用分数可以表示两个数相除的商。

  【教师准备】 PPT课件,口算卡片。

  【学生准备】 3个完全相同的圆片,剪刀。

  填一填。

  (1)表示的意义是()。

  (2)的分数单位是(),它有()个这样的分数单位。

  【参考答案】

  (1)4个是多少

  (2)7

  老师出示口算卡片,学生口答。

  8÷4= 15÷5= 12÷3=

  5÷4= 6÷5= 7÷3=

  师:比较这6道题的商,你发现了什么

  预设生:上面3题的商没有余数,下面3题的商都有余数。

  师:以前计算整数除法时,如果遇到除不尽或得不到整数商的情况,我们就只算到个位,然后写出余数是几,有了分数以后,就可以解决这个问题了。除法的商怎么能用分数表示呢除法与分数有什么关系呢这就是我们今天要研究的问题。(老师板书课题:分数与除法)

  由比较两组口算题的结果引入课题,使学生明确用分数可以表示除法的商。

  师:请同学们回忆一下,在计算除法时,如果遇到除不尽或得不到整数商的情况,我们是怎样处理的。

  预设生:可以用小数表示商,或者除到个位后,用余数表示结果。

  师:你们知道吗有了分数,再遇到这种情况,我们就可以用分数来表示商。想不想知道怎样用分数来表示除法的商(想)要想知道怎样表示,就要先理解分数与除法的关系。(老师板书课题:分数与除法)

  通过老师提问,引起学生思考,激发学习欲望。

  一、教学例1,掌握用分数表示除法的商的方法。

  1、PPT出示例1。

  (1)学生看图、读题,思考解答方法。

  (2)指名回答:求每人分得多少个,怎样列式

  预设生:根据题意应该列式为:1÷3。

  (3)用PPT出示:用一个圆表示一个蛋糕,把一个圆平均分成3份,其中1份涂色。让学生根据图意说出结果是多少。

  预设生:每人分得个。

  老师根据学生回答板书:1÷3=(个)。

  2、巩固练习。

  用分数表示下面各题的商。

  3÷7= 5÷8= 9÷10=

  21÷32= 4÷11= 6÷13=

  【参考答案】

  使学生了解用分数表示商的方法。

  二、教学例2,使学生理解分数与除法的关系。

  1、PPT出示例2。

  (1)学生看图、读题,思考解答方法。

  (2)指名回答:求每人分得多少个,怎样列式

  预设生:根据题意应该列式为:3÷4。

  (3)让学生拿圆片代替月饼实际分分,可能有不同的分法。然后让学生汇报。

  (4)用PPT出示:把3个月饼平均分成4份,其中1份是3个四分之一个月饼,再把这3个四分之一拼起来,可以看出得到了四分之三个月饼。然后让学生说出结果是多少。

  预设生:每人分得个。

  老师根据学生的回答进行板书:3÷4=(个)。

  2、老师引导学生观察除法算式与分数,探究它们之间的关系。

  (1)用文字进行表述例1和例2的算式。

  1÷3=

  3÷4=

  被除数÷除数的结果怎样表示得到:

  被除数÷除数=

  (2)学生在小组中学习用语言描述分数与除法之间的关系,然后指名回答。

  预设生:被除数相当于分数中的分子,除数相当于分数中的分母,除号相当于分数中的分数线。

  (3)小组讨论,用字母表示出分数与除法的关系,然后派代表发言。

  预设生:a÷b=。

  (4)引导学生思考b可以是0吗学生通过小组讨论后明确,因为除数不能为0,所以分数的分母不能为0,因此b也不能等于0。

  老师根据学生的回答进行板书。

  a÷b=(b≠0)

  被除

  除数

  数

  (5)教师小结:现在学习了分数与除法的关系,复习题中表示的意义,还可以看作把“4”平均分成5份,表示这样一份的数。

  通过小组讨论,使学生明确分数与除法的关系。

  三、教学例3,使学生经历求一个数是另一个数的几分之几的过程,进一步理解分数的意义,知道分数还可以表示两种数量比较的关系。

  1、PPT出示例3。

  (1)学生读题,理解题意。

  (2)出示自学要求:

  ①想一想,答案是多少

  ②有什么办法说明自己的答案是正确的怎样说明

  ③题中的两个问题有什么关系

  学生根据自学要求翻开教材第50页,自主学习、交流,老师巡视了解学情,对学生进行指导。

  (3)组织学生汇报自学情况,展示答案。

  自学要求①:

  预设生:求“鹅的只数是鸭的几分之几”就是求7只是10只的几分之几,用除法计算,列式为:7÷10,根据分数与除法的关系可知结果是。求鸡的只数是鸭的多少倍,也用除法计算:20÷10=2。

  自学要求②:

  预设生:可以通过画图分析,证明自己的答案是正确的。

  (根据学生回答,展示学生画的图或用PPT出示教材第50页的图)

  自学要求③:

  预设生:第1问是求一个数是另一个数的几分之几;第2问是求一个数是另一个数的几倍。这两个问题都用除法计算。

  2、老师引导学生小结:求一个数是另一个数的几分之几,或几倍,都用除法计算。两个数相除,如果商是整数,那么用几倍来表示;如果商不是整数,那么用几分之几来表示。(老师板书)

  3、师:根据题意,你们还能提出其他的数学问题并解答吗

  (1)学生在小组里讨论,提出问题并解答。

  (2)各小组展示提出的问题和解答的过程。

  预设生1:我们提出的问题是:鹅的只数是鸡的几分之几解答是:7÷20=。

  生2:我们提出的问题是:鸭的只数是鸡的几分之几解答是:10÷20=。

  ……

  4、巩固练习。

  五、(1)班有男生23人,女生22人。

  (1)女生人数是男生人数的几分之几

  (2)女生人数是全班人数的几分之几

  (3)男生人数是全班人数的几分之几

  学生独立解答,指名回答,集体订正。

分数与除法教案9

  教学内容:

  分数除法的意义和分数除以整数(教科书第25页——26页的例1,练习七第1——7题)。

  教学目标:

  使用学生理解分数除法的意义,掌握分数除以整数的计算方则,并正确计算分数除以整数。

  教学重点:

  分数除以整数的计算方法 。

  教学难点:

  除转化为乘和道理。

  教学过程:

  一、 复习

  1.口答下面各题的倒数。

  2 、1、0.4

  2.根据一个乘法算式写出两个除法算式。

  3×15=45 125×8=1000

  二、 新授

  揭示课题:分数除法

  1.分数除法的意义和计算法则

  (1) 出示25页的月饼图。

  (2) 引导学生回答问题

  1)每人吃半块月饼。4个人一共吃多少块?怎样列式?得多少?

  板书:×4=2 (块)

  2)再看把两块月饼平均分给4个人,每人分得几块?怎样列式?得多少?

  板书:2÷4=(块)

  3) 如果把两块月饼平均分给每个人半块,可以分给几人?怎样列式?得多少?

  板书:2÷=4(人)

  (3) 让学生观察比较(板书的)3个式子的已知数和得数。

  明确:第一个算式是已知两个因数(和4)求它们的积(2),用乘法计算。

  第二算式是已知两个因数的积2与其中一个因数4,求一个因数,用除法计算。 第三算式是已知两个因数的积2与其中一个因数,求一因数4,用除法计算。

  小结:分数除法的意义。

  强调:分数除法的意义和整数除法的意义相同。

  (4) 练习:教科书第25页"做一做。

  2.分数除以整数的计算方法。

  (1)出示例子:把米铁丝平均分成2段,每段长多少米?

  (2)启发学生分析数量关系。(画线段图表示)

  米是1米的,把1米平均分成7份,表示其中的6份。6份是,再加上米米里面有6个米,要把米平均分成2段实质就是把6个米平均分成2份,每份是3个米,就是米。

  板书 解法1:÷2==(米)

  使学生明白。

  1)分数除以整数,可以把分数的分子除以整数作分子,分母不变。

  2)这种计算方法有限制条件的,分子必须能被整数整除。

  还有其它的解法吗?

  引导学生结合图形在学过知识的基础上理解到,把米平均分成2段,每段长多少米实际上就是求米的是多少,所以用×来计算。

  板书 解法2:÷2=×=(米)

  (3) 小结:分数除以整数的计算方法。

  板书:分数除以整数(0除外),等于分数乘以这个娄的倒数。

  强调。

  1)被除数不变;

  2)在“÷”转化为“×”的同时,除数的分子、分母调换位置;

  3)0不能做除数,0没有倒数;

  4)这种计算方法在一般情况下都可以进行,应用普遍。

  5)练习:教科书第26页“做一做”。3、看教科书第25——26页,注意解决学生提出的问题。

  三、 巩固练习

  练习七第1、3题。

  四、 作业

  练习七第2、4、5、6题

  五、 课外思考

  练习七第7题。

分数与除法教案10

  分数除法一(分数除以整数)

  教学目标和要求

  1, 在涂一涂、算一算等活动中,探索并理解分数除法的意义。

  2, 探索并掌握分数除以整数的计算方法,并能正确计算。

  3, 能够运用分数除以整数解决简单的实际问题。

  教学重点

  分数除以整数的计算方法。

  教学难点

  分数除以整数的计算方法

  教学准备

  教学时数

  1课时

  教学过程

  一, 涂一涂,算一算

  1, 把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

  2, 把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

  (1)第1题让学生可以先用画图、分数的意义等方法解决这个问题,然后根据除法的意义列出算式4/7÷2。在画图、理解分数的意义的基础上,生得出4/7÷2=2/7。因此,学生可能会得到“分母不变,被除数的分子除以除数得到商的分子”。

  (2)鼓励学生探索第2题,联系分数乘法的意义,说明把4/7平均分3份,也就是求4/7的1/3,从而理解其基本算理。让学生在第1题的基础上来引导学生发现此时被除数的分子不能被除数整除,从而总结出分数除以整数的一般方法,即用分数乘以除数的倒数。

  二, 填一填,想一想

  1, 变换探索的角度,呈现三组算式,让学生实际运用,再次验证一个分数除以整数的意义和算理。2

  2, 师导学生根据前面的三个活动,总结算法。3,

  3, 让学生先列举出分数除法算式,并利用手中的学具具体地分一分,涂一涂,借助图形语言进行理解。

  三, 试一试

  练习分数除以整数的计算方法,沟通起分数除法与分数乘法的联系。

  四, 练一练

  1,第26页第2,3题,让学生独立解决。

  教学内容(课题)

分数与除法教案11

  设计说明

  《数学课程标准》指出:学生是学习的主体,教师是组织者、引导者、合作者。因此,本节课以自主探究、小组合作的学习方式为主,采用情境教学法。先通过分月饼来导入新知,再通过实例验证,自己总结归纳出整数除以分数的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。本节课的教学设计有如下特点:

  1.注重对算理的探究。

  探究算理是计算教学的根本。本节课的教学设计借助除法的意义和直观图形,让学生通过观察、比较与思考,发现整数除以整数(0除外)与整数除以分数知识间的内在联系,初步体会“除以一个不为零的数”与“乘这个数的倒数”之间的联系。这样不仅为学生创设了一个理解分数除法意义的机会,还教会了学生一种学习的方法,即分数除法的意义可以联系整数除法的意义进行学习。

  2.突出自主探究的过程。

  《数学课程标准》指出:自主探究、合作交流是数学学习的重要方式。本节课充分发挥学生的主体作用,先让学生独立思考,探究计算方法,再在独立探究的基础上,让学生小组合作讨论,探究不同的计算方法。这样不仅可以使学生经历独立探究、小组探究的过程,还可以使学生对“整数除以分数”的算理和算法的理解更深刻。

  课前准备

  教师准备 PPT课件

  学生准备 圆形纸片

  教学过程

  第1课时 分数除法(二)(1)

  ⊙创设情境,导入新课

  有4张饼,平均每人得到了2张;还是同样的4张饼,平均每人得到了1张。你能猜出两次分别是几个人分的饼吗?你是怎么想的?

  设计意图:以猜一猜的形式导入新课,生动地呈现例题,激发了学生学习的兴趣。

  ⊙合作交流,探究新知

  1.初步探究计算方法。

  (1)课件出示教材57页上面例题。

  (2)组织学生独立完成前两个小题,明确数量关系。

  学生独立完成后汇报:

  每2张一份,可分成几份?4÷2=2(份)

  每1张一份,可分成几份?4÷1=4(份)

  (3)组织学生讨论后,明确一个数除以分数的计算方法。

  ①引导学生动手操作,用圆形纸片代替饼,画一画,分一分,完成填空,并汇报自己的分法。

  生1:我把每个圆都平均分成2份,一共可分成8份,可以用算式4÷=4×2=8(份)来表示。

  生2:我把每个圆都平均分成3份,一共可分成12份,可以用算式4÷=4×3=12(份)来表示。

  ②观察算式,明确计算方法。

  组织学生观察下面两个算式,交流自己的发现。

  4÷=4×2=8 4÷=4×3=12

  小结:一个数除以一个不为零的数,等于乘这个数的倒数。

  设计意图:让学生充分利用学具,独立完成整数除法的计算,明确题中的数量关系;借助画一画、分一分的方法完成除法到乘法的转化。通过自主观察、小组讨论交流,真正理解一个数除以一个不为零的数,等于乘这个数的倒数的计算方法。

  2.进一步巩固计算方法。

  (1)出示教材57页中间例题的表格。

  (2)引导学生观察表格前两行,讨论、交流表格中各项的意义和计算方法。

  (3)组织学生填写表格。

  (4)讨论:从表格“算式”一栏,你发现了什么?

  (一个数除以一个不为零的数,等于乘这个数的倒数)

  3.算一算,巩固计算方法。

  (1)组织学生独立完成教材57页下面例题。

  (2)汇报交流,说明计算时需要注意的事项。(能约分的要约分)

  ⊙巩固练习,提升反馈

  完成教材58页3题,集体订正。

  ⊙课堂总结

  通过本节课的学习,你有哪些收获?

  ⊙布置作业

  教材58页1、2题。

  板书设计

  分数除法(二)(1)

  4÷=8 4÷=12

分数与除法教案12

  教学设计

  (一)教学内容

  北师大版五数上册P39-40

  (二)、本课的基本理念

  在分饼具体活动中, 通过自主合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳、交流的能力。

  (三)教材分析

  教材从分蛋糕的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,从而得到两个关系式:12=1/2,73=7/3。再引导学生观察比较这两组关系式,发现分数与除法的关系,并得出分数与除法的关系式。

  (四)学情分析

  学习本课前,学生已经理解了分数的意义和除法的意义,具有了一定的操作画图能力和小组合作能力,知道了除数不能为0。在此基础上学习《分数与除法》就显得比较轻松。假分数与带分数的互化在以后的应用较少,因此要求不必过高,难度不要过大,只要学生会做就可以了。

  (四)教学目标

  1、结合具体的情境观察比较,理解分数与除法的关系,会用分数表示两数相除的商。

  2、运用分数与除法的关系,探索假分数与带分数的互化方法,理解假与带分数的互化算理,会正确进行互化。

  3、培养学生分析问题的能力,能够解决生活中的实际问题。

  (五)、教学重难点:

  教学重点:目标1。

  教学难点:目标2。

  (六)、教法选择

  教师结合实际情境,引导学生参与探索分数与除法关系的过程,在归纳出关系式后,先引导学生用自己的话说一说这个关系式的意思,再引导学生思考分数的分母能不能是0?。可以利用分数与除法的关系来理解,因为在除法中,0不能作除数,分数中的分母相当于除法中的除数,所以分母也不能是0。最后再讨论探索出假分数的方法,并练习巩固。

  (七)教学准备:圆片若干

  (八)、教学过程

  A、复习引入。

  1、师:同学们,在昨天的学习中,你认识了些什么?

  2、能来试一试吗?(出示小黑板)

  2个1/3是( )。 ( )个1/8是3/8。 14个1/9是 ( )。

  4/5里有4个( )。 15/8里有 ( )个。 2里面有 ( )个1/4。

  B、探索新知。

  1、分数与除法的关系

  ①解决问题1:

  ( 出示小黑板)把1块蛋糕平均分给2个小朋友,每人可以分到几块蛋糕?

  师:老师这儿有些数学问题,你能列出算式来解决吗?

  (学生独立在草稿本上完成,教师巡视)。

  抽生全班集体交流,同时集体订正。(要组织引导学生说清其算式的意义和商的由来等)。

  ②解决问题2:把7块蛋糕平均分给3个小朋友,每人可以分到几块蛋糕?(方法同上)

  ③(师指板书上的算式与商)师:同学们仔细观察,你发现分数与除法有什么关系?和同学交流一下

  (生独立在草稿纸上写,师巡视)。

  ④抽生交流,师适时板书

  被被除数除数 = (除数不为0)

  ⑤并组织学生讨论:分数的分母能不能是0?为什么?

  ⑥师:除法与分数有什么区别?

  ⑦练习1:将下列除法算式改写成分数,把分数改写成除法算式(独立练习后订正,1小题和5小题说方法)

  4/5= 19/8= 21/3= 13/5= 15= 417= 2489= 122=

  2、假分数与带分数互化的方法。

  ①师:你能运用除法与分数之间的关系来试一试解决问题吗?翻开书P39,试一试1题。(学生独立完成后集体订正。)

  ②师(指板书):这样把7/3化成带分数?小组讨论后汇报。8/4呢?

  ③师生小结:把假分数化成带分数,要用分子去除以分母。能整除的,所得的商就是整数;不能整除的,除得的商就是带分数的整数部分,余数是分数部分的分子,分母不变。

  ④练习2: 把21/3,19/8化成带分数或整数?

  ⑤你能把二又三分之一化成假分数吗?小组讨论后汇报

  ⑥归纳小结:把带分数化成假分数,用原来的分母做分母,用分母与整数的乘积再加上原来的分子做分子。

  ⑦练习3: 把三又五分之二 ,四又九分之一化成假分数。同桌互说方法。

  C、练习巩固

  书P40 24 题。( 独立练习后集体订正等。)

  D、全课总结

  (九)、板书设计

  分数与除法

  被除数(分子)

  联系: 被被除数除数 = (除数不为0)

  除数(分母)

  区别: 是一种运算 是一个数

分数与除法教案13

  教学内容:

  教材第29~30页“分数除法(三)”。

  教学目标:

  1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

  2.在解方程中,巩固分数除法的计算方法。

  教学重难点:

  1.能够体会方程是解决实际问题的重要模型。

  2.能够用方程解决实际问题。

  教学过程:

  一、创设情景激趣揭题

  1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?

  2.引入并板书课题。

  二、扶放结合探究新知

  1.根据这些数学信息,你能提出哪些数学问题?

  2.引导学生逐一解答提出的问题。

  3.重点引导:跳绳的有6人,是操场上参加总人数的2/9,操场上有多少人?该怎样解答?

  4.引导观察,找出有什么相同点和不同点?

  三、反馈矫正落实双基

  1.指导完成P29的试一试的1,2题。

  2.你能根据方程

  X×1/5=30

  编一道应用题吗?

  3.请你想一个问题情景,遍一道分数应用题。

  四、小结评价布置预习

  1.引导小结

  通过本节课的学习你有哪些收获?

  2.布置预习

  整理前面所学知识。

  板书设计:

  分数除法(三)

  跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

  参加活动总人数×2/9=跳绳的人数

  解:设操场有X人参加活动。

分数与除法教案14

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

分数与除法教案15

  教学内容:

  分数乘法、除法计算练习

  教学目标:

  1、通过练习,更好地掌握分数乘法和分数除法的计算方法,形成相应的计算技能,提高计算能力,培养良好的计算习惯。

  2、通过练习,进一步提高运用分数乘法计算解决简单的实际问题的能力。

  3、通过练习,进一步体会数学知识之间的内在联系,感受数学知识和方法的应用价值,增强学好数学的信息。

  教学重、难点:

  掌握运用分数乘法解决简单实际问题的基本思路与方法。

  教学对策:

  设计一些找单位1的量和分析数量关系式的练习,多组织学生说思考过程,通过交流感受一些方法。

  教学准备:

  自制投影片或小黑板

  教学过程:

  一、揭示课题

  谈话:国庆长假之前,我们学习了分数乘法和分数除法的有关内容,在计算中,同学们还存在一些问题,所以今天这节课,我们将进行相关练习,帮助大家更好地掌握这些知识。(板书课题:分数乘法和分数除法)

  二、基本练习

  1、计算练习。

  5/129/10 3410/51 22/3926/11

  10/2112/257/8 3/20145/7

  8/15 6 11/622 2515/16 812/13

  11/1222/9 15/165/12 5/1410/21

  学生任选3道乘法、3道除法进行计算,同时指名学生板演,教师及时结合学生计算情况进行讲评。

  组织学生小结分数乘法和分数除法的计算方法。

  2、解方程。

  12x=9/11 3/8x=9/10 6/5x=15

  学生先独立完成,再指名学生板演,结合板演情况进行讲评时指出解方程的格式及依据,及时纠正学生计算中的错误。

  3、在○里填上、或=。

  5/711/13○5/7 7/916○7/91/16

  5/71○5/7 5/77/5○5/7

  6/73/5○6/7 3/84/ 3○3/8

  110/9○1 8/111○8/1

  学生不计算,通过已学知识进行判断,然后交流判断理由。

  教师及时组织学生小结:

  一个数乘真分数,结果小于这个数;一个数乘以1,结果等于这个数;一个数乘比1大的假分数,结果大于这个数。

  一个数除以真分数,结果大于这个数;一个数除以1,结果还等于这个数;一个数除以比1大的假分数,结果小于这个数。

  4、根据已知条件找准单位1的量并说说数量关系式。

  (1)白兔只数的5/12是黑兔的只数。

  (2)已经修了公路全长的3/4。

  (3)今年棉花产量比去年增加1/8。

  (4)第三季度冰箱价格比第二季度便宜1/10。

  (5)二班植树棵数相当于一班的9/8。

  (6)还剩这堆煤的3/8。

  学生同桌之间进行练习,每人选3题说说数量关系,然后指名交流。

  5、解决实际问题。

  (1)小明用3/10小时走了15/16千米,平均每小时走多少千米?照这样的速度,小明走1千米要多少小时?

  (2)一种柴油2/3升重8/15千克。1升这样的柴油重多少千克?1千克这样的柴油有多少升?

  (3)鹅的孵化期是30天,鸡的孵化期是鹅的7/10,鸭的孵化期是鸡的4/3倍,鸭的孵化期是多少天?

  (4)一个乒乓球从50分米的高度下落,每次弹起的高度是下落时高度的2/5,第三次下落时能弹起多少分米?

  (5)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是鲜牛奶的2/15。一盒酸奶的净含量是多少升?

  (6)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量比鲜牛奶少13/15。一盒酸奶比一盒鲜牛奶少多少升?

  (7)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是1/5升。一盒酸奶的净含量比一盒鲜牛奶少多少升?

  学生独立完成后进行交流,主要交流思考过程。

  三、全课总结

  评价一下自己的练习情况,分析一下还存在什么问题。

  课后反思:

  按照课前的教学设想,我先组织学生进行了分数乘、除法计算练习,然后进行了分析数量关系式的练习,最后进行了解决实际问题的练习。课堂上学习效果还不错。

  但从学生作业情况看,有些学生解决实际问题时,还未认真读题就列式计算,这样就存在一个问题,当天所学的如果是分数乘法,这部分学生在解题时就会全部用乘法来解决问题;如果今天学的是分数除法,他们就全部用除法来计算。也就是说完全是模仿,没有自己的理解和对问题的思考、分析。长此下去,造成的后果是严重的。所以要把问题杜绝在源头,在练习过程中,我经常组织学生进行对比练习,逼着他们要独立思考,让他们感到没有自己的思考是无法正确解答题目的。