作为一位杰出的老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。优秀的教案都具备一些什么特点呢?以下是小编为大家整理的圆的面积教案4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
圆的面积教案 篇1
教材说明
教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。学生在学习求直线图形面积时,已经用过这种方法。因此,教材中采取直接提出问题,来引导学生推导圆面积的计算公式,又一次让学生了解用这种数学思想和方法来解决新的较复杂的问题。教材采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形。使学生看到把圆分别分割成16、32等份,分割的份数越多,拼得的图形就越接近于长方形。然后由长方形的面积计算公式推导出圆面积的计算公式S=r2。这里涉及了数学中常用的逐步逼近的方法,就是采取某种方法,使一个近似的图形(或式子)逐步逼近精确的图形(或式子)。
这部分内容教材中安排了三道例题。例3是已知半径求圆的面积。例4是已知圆的周长求圆的面积,要先求出半径,再求圆的面积。例5是求环形的面积,教材通过插图帮助学生理解求环形的面积是从大圆面积中减去小圆面积。然后再引导学生列综合算式解答,找到简便的算法为3.14(152-102)。做一做中的题目跟例题有差异,但思想方法仍是从一个大的图形的面积中减去一个小的图形的面积。由于环形问题比较复杂,教材中只通过一个例题向学生简单介绍一下,不作更多的要求。在日常生活和工农业生产中经常要用到求圆的面积,练习中安排了已知半径、直径或圆的周长求圆面积的题目;还安排了一些求组合图形的面积和实习作业,以培养学生综合运用知识的能力
。 教学建议
1.这部分内容可以用2课时进行教学,教学圆的面积公式的推导、例3、例4、例5,完成练习二十四。
2.教学圆的面积的含义时,可以先让学生回忆已学过的图形的面积的含义,并进行分析对比,使学生认识到它们的共同点。
3.教学圆面积的计算公式之前,先要引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。使学生领会到将一个图形转化为已学过的图形,从而推导出这个图形的面积计算公式,是一种基本的数学思想和方法,同时,不同图形的面积计算公式推导的过程和方法会有不同之处。
4.教学圆面积计算公式的推导过程时,可以让学生预先准备好一些圆形做学具。
在教师指导下,让学生按照教材上的图,将圆16等分、剪开后,拼成一个近似的长方形。(教师还可以用教具将圆分成24等份,拼成一个近似的长方形。)然后,把每一份再2等分,剪开后,拼成一个近似的长方形。教师可以直接用把圆分成32等分的教具拼成一个长方形。最后,把拼成的图形加以比较,使学生看到,分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。由于在拼接的过程中,图形的面积没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。接着,教师在拼成近似长方形的旁边画一个长方形,并指出如果份数分得越细,拼成的近似长方形就越接近长方形。教师引导学生分析、比较长方形的长与宽跟原来的圆的半径与周长之间的关系,使学生能自己看出:这个近似长方形的长相当于圆的周长的一半,即C/2=2r/2=r,长方形的宽就是圆的半径r。因此,长方形的面积=长宽=r,圆的面积等于长方形的面积,所以圆的面积=r=r2。
5.教学例3时,列成式子3.1442后,要向学生指出,必须先算平方,后算乘法。
6.教学例4时,要启发学生想:计算圆的面积需要什么条件?题目中给了什么条件?怎样将题目中的已知条件转化成求圆面积所需要的条件?因为题目中给出的条件是圆的周长,要按照公式C=2r,先求出半径r,列式为:18.843.142;再利用公式S=r2,让学生自己求出圆的面积。运算中要注意单位名称,r用长度单位,S用面积单位,防止混淆。
7.学生在学过圆的面积以后,往往容易把计算圆的面积与周长混淆。教学中除加强圆周长和圆面积这两个不同概念的教学以外,可以在适当的时候,结合做一做引导学生进行辨别,分清以下几点:
①圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度;
②求圆面积的公式是S=r2,求圆周长的公式是C=d或C=2r;
③计算圆面积用面积单位,计算圆周长用长度单位。
8.教学例5时,教师要根据题意准备实物或教具(一个圆中间可以取出一个同圆心的小圆),通过演示,使学生明确,求环形面积就是从大圆面积中减去小圆面积。因此,分步计算都是先分别求出大圆面积和小圆面积,再求出环形的面积。当要求列综合算式时,就可以得到简便算法为3.14(152-102)。例5后面做一做中的习题,跟例5基本类似。通过这道题的计算,要使学生进一步巩固计算这类环形面积的方法,一般是从大圆的面积中减去小圆的面积。
9.关于练习二十四中一些习题的教学建议。
第2题中,有已知直径求圆面积的题目。解答时,先求出半径r,再计算圆面积。
第6题,是求一个数的平方的口算练习。掌握常用的平方计算,对提高计算圆面积的速度有帮助。教师还可以补充一些10以内数的平方练习。要着重指导学生练习整十数的平方,如402是4040=1600,而不是402。
第7、8题,是已知圆的周长求圆的面积,先要由圆的周长求出圆的半径,再求圆的面积。
第9题,是实习作业,先让学生讨论测量的方法。测量时一般用绳子在齐胸脯处围树干一周,就是树干横截面的周长,取得数据后再计算横截面的面积。
第14*题,借助图形使学生直观认识到,在一个正方形里,当直径等于正方形的边长时,画的圆最大。具体到这道题,就是当要剪下的圆的直径等于正方形铁皮的边长时,才能剪下一个最大的圆。因此,我们可以算出最大的圆的面积是: S圆=r2=25=78.5(平方厘米)而正方形的面积是:S正方形=1010=100(平方厘米)所以,剩下的铁皮的面积是:100-78.5=21.5(平方厘米)从而可以得出:剩下的铁皮的面积大约占原来正方形面积的1/5。
第15*题,是求组合图形面积的练习。
教学时,要引导学生首先分析图形的组合情况,判断所求的图形是由哪个图形加上(或者减去)哪个图形得到的,然后进行计算。如图所示,该图可以看作由1个正方形和4个1/4圆组成的,所以该图形的面积是1个正方形的面积与1个整圆面积的和(这个圆的半径等于正方形的边长)。第16*题,要先求圆的半径和正方形的边长,再求出面积进行比较。这里包含一个数学性质,即在边长相同的条件下,所围成的图形中圆的面积最大。
圆的面积教案 篇2
【第一课时】 圆的面积
一、 教学目标
1.知识与技能
理解圆的面积的概念,理解和掌握圆面积的计算公式,并能正确计算圆的面积,解答有关的实际问题。
2.过程与方法
引导学生利用已有的知识,通过猜想、操作、验证、归纳等活动,经历圆面积计算公式的推导过程,培养学生观察、操作、分析、概括的能力,发展空间观念,渗透转化、极限等数学思想方法。
3.情感态度与价值观
通过自主探究圆面积转化的过程,培养学生大胆创新,勇于尝试,克服困难的精神,使学生体验成功的乐趣。
二、教学重点
正确计算圆的面积。
三、教学难点
圆面积公式的推导。
四、教学具准备
课件、学具。
五、教学过程
(一)情境导入
1.叙述:俗话说的好:“民以食为天”。餐桌是家家户户必不可少的。这不,小明家就新购置了一张圆形的餐桌。为了起到保护作用,妈妈给了他一个任务,让他去配一个与桌面相同大小的玻璃桌面。这可把小明难住了,这玻璃桌面该多大呢?【可使用圆的图片2】 同学们,要想帮助小明解决他的问题我们需要用到什么知识呢?
今天这节课我们就来学习圆面积的求法。(板书题目:圆的.面积)
2.看到今天的课题,你都想知道什么?
3.什么是圆的面积?在哪?摸摸看。
(学生摸手中圆形纸片,并用手指出圆的面积)
过渡语:圆的面积怎样求呢?在这里,我们不妨先回忆一下其它图形面积的推导过程。
(二)复习旧知识
1.你还记得我们已经学过了哪些图形的面积求法吗?
(生:长方形、正方形、平行四边形、三角形、梯形)
2.回忆一下,平行四边形面积计算公式我们是怎样推导出来的?(课件演示)
3.问:其它图形呢?(学生简要叙述其他面积推导过程)
4.小结:这样看来,当我们遇到新问题时,往往可以借助已有的知识进行解决。
(三)学习新课
1.请你猜猜看,圆的面积公式应该怎么推导出来?
(生:转化成已知的图形进行推导)
2.怎么转化?想想办法。任意的分成几份行吗?
(生:沿圆的直径将圆平均分成若干份)
3.下面请大家动手实际拼摆一下,看看自己的想法能否实现。请看活动要求:
(1)以组为单位,先摆图形。
(2)看看拼出的图形的底和高与圆的关系,并推导圆的面积公式。
(3)有问题及时记录,以便讨论。
(学生动手拼摆并贴在白纸上)
4.你们遇到什么问题了吗?
(生:边不是直的,是弯的)。
5.谁能帮助他解决这个问题?
(学生谈自己的想法)
6.是的,边不是直的这可怎么办呢?我们已拼成长方形为例,当我们把圆平均分成四份,拼成的图形是这样的;把圆平均分成8份,拼成的图形是这样的;把圆平均分成16份,拼成的图形是这样的;把圆平均分成32份;拼成的图形是这样的。(课件展示)
【可使用圆的图片27】
7.同学们请你对比大屏幕上拼得的这几幅图,你有什么想法吗?
(学生谈自己的想法)
8.看来,把圆平均分的份数越多,曲线越接近于线段,拼得的图形越接近我们所学过的图形。当分成无数份时,曲线也就变成了直线。这个问题解决了么?下面继续小组合作,推导圆面积计算公式。
(学生谈自己的想法)
9.汇报不同推导方法:
转化成长方形的:
长方形的面积=a × b 圆的面积=c×r 2
=π r × r
=π r 2
转化成平行四边形的:
平行四边形的面积= a × h
圆的面积= c × r 2
=π r × r
=π r 2
转化成三角形的:
三角形的面积= 1× a × h 2
圆的面积= 1c×4r 24
c× r 2 =
=π r 2
转化成梯形的: 梯形面积=1×(a+b)× h 2
15c3c×(+)×2r 21616
1c××2r 22
c× r 2圆形面积= ==
=π r 2
10.观察一下,这些推导过程有什么相同的地方?
(生:都是将圆转化成已知图形去推导的)
11.总结:由此可知,我们在推导圆面积计算公式的时候可以用全部的小扇形推导,也可以用一个小扇形推导,当然也可以用部分小扇形推导。
现在我们圆面积的计算公式已经推导出来了,小明的问题可以解决了我吗?要想解决它的问题我们需要知道哪些条件?(圆的直径、半径或周长)
(四)巩固练习
1.求圆的面积(单位:厘米)
r=3 答案:s=28.26(平方厘米)
d=20答案:s=314(平方厘米)
c=125.6答案:s=1256(平方厘米)
2.小明测量出桌面的直径是2米,你能算出玻璃桌面的面积吗?
答案:3.14×22 =12.56(平方米)
3.判断
(1)直径是2厘米的圆,它的面积是12.56平方厘米。()
(2)两个圆的周长相等,面积也一定相等。()
(3)圆的半径越大,圆所占的面积也越大。()
(4)圆的半径扩大3倍,它的面积扩大6倍。 ()
4.听故事解题:
巴依老爷买来一群羊。
巴依老爷说:“阿凡提,快把新买的羊赶倒圈里去”。
阿凡提说:“老爷,这个长方形羊圈太小了!”
巴依老爷:“什么,太小了?你不把羊全部赶进去,哼哼,你的工钱就别拿了!要不,你自己花钱买些材料,把羊圈围大些。”
阿凡提想:“该怎么办呢?怎么样才能既不花钱另买材料,又能够让羊圈的面积变大呢?”
同样聪明的同学们,你们能帮阿凡提想个办法吗?并且请你说明你的理由。
(五)小结
今天这节课你有什么收获?
【第二课时】 圆环面积
一、 教学目标
1.知识与技能
掌握圆环面积的计算方法,能灵活解决生活中相关的简单实际问题。
2.过程与方法
在经历画圆环、剪圆环的活动过程中,初步感受圆环的特点、形成过程,进而探索出圆环面积计算的方法。培养学生观察、动手操作、比较、分析、概括等能力。
3.情感态度与价值观
进一步体验图形与生活的联系,感受平面图形的学习价值,提高学习数学的兴趣。
二、教学重点
圆环的特征、圆环面积公式的推导及运用。
三、教学难点
灵活运用圆环面积的计算方法解决相关的简单实际问题。
四、教学具准备
课件、学具。
五、教学过程
(一)学习方法回顾、铺垫回忆一下
我们在推导圆面积计算公式时用到了什么学习方法?
(生:把圆形转化成学过的平面图形,利用旧知识推导出新知识。)
这也就是我们常说的遇到不会的想会的,把新知识转化成了旧知识解决。 板书:不会
想 会
新 旧
这节课我们继续用这种方法研究新问题。
(二)创设实际应用的问题情境
1.同学们你们喜欢看动画片吗?今天老师带来了几张光盘,看,这是什么?
(1)动画光盘(2)歌曲光盘
(3)空白封面光盘
2.想知道这张光盘的内容吗?我们一起来看看。
欣赏学生的校园活动照片。
这些照片见证了我们同学6年来快乐的校园生活,非常珍贵。想不想把它珍藏起来?老师打算把这些照片刻成光盘,等你们毕业时当毕业礼物送给你们好吗?
3.现在这张光盘的封面还空着呢,你想不想亲自为它设计一个有纪念意义的封面呢?要进行设计,咱们先了解一下哪部分是可以进行封面设计的。
4.小组内摸一摸准备的光盘实物,再让学生实投指一指。
师课件演示(由实物抽象出线条图形、涂色图形)【可使用圆动画14】
5.这个图形有什么特点?
生:由两个圆组成,它们的圆心是相同的。(课件点击出圆心)
6.师说明:这样两个同心圆所夹的部分我们把它叫做圆环。
板书课题:圆环
外面的圆我们叫它外圆,里面的小圆我们叫它内圆。两个圆周之间的距离我们叫做环宽。
圆的面积教案 篇3
小学数学第十一册第四单元圆练习题
一、填空。
(1) 写出下面各题的最简整数比。
①圆的半径和直径的比是( ),圆的周长和直径的比是( )。
②小圆的半径是4厘米,大圆的半径是6厘米。小圆直径和大圆直径的比是( ),小圆周长和大圆周长的比是( ),小圆面积和大圆面积的比是( )。
(2)把圆分成若干等份,然后把它剪开,可以拼成一个近似于长方形的图形,这个长方形的长相当于圆的( ),长方形的宽相当于圆的( )。
(3)圆的周长是37.68分米,它的面积是( )平方分米。
(4)圆的半径扩大3倍,它的面积就扩大()。
(5)一个圆的周长、直径和半径相加的和是9.28厘米,这个圆的直径是()厘米;面积是()。
(6)在一个边长为12厘米的正方形纸板里剪出一个最大的圆,剩下的面积是( )。
(7)要在底面半径是10厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是6厘米,需用铁丝( )厘米。
(8)用圆规画一个圆,如果圆规两脚之间的距离是6厘米,画出的这个圆的周长是( )厘米。这个圆的面积是( )平方厘米。
7、用一根长12.56厘米的铁丝围成一个正方形,正方形的面积是()平方厘米;如果用这根铁丝围成一个圆,这个圆的面积是()平方厘米。
二、判断题。正确的画“√”,错的打“×”,并订正。
(1)在一个圆里,两端都在圆上的线段叫做圆的直径。( )
(2)小圆半径是大圆半径的12 ,那么小圆周长也是大圆周长的12 。( )
(3)小圆半径是大圆半径的12 ,那么小圆面积也是大圆面积的12 。( )
(4)半圆的周长就是这个圆周长的一半。( )
(5)求圆的周长,用字母表示就是C=πd或C=2πr。( )
三、选择题。将正确答案的序号填在括号里。(8%)
(1)画圆时,固定的一点叫()。
① 顶点② 圆心 ③ 字母O
(2)从圆心到圆上任意一点的()叫做半径。
① 直线② 射线 ③ 线段
(3)周长相等的图形中,面积最大的是()。
① 圆 ②正方形③长方形
(4)圆周率表示()
① 圆的周长②圆的面积与直径的倍数关系 ③圆的周长与直径的倍数关系
(5)半径为r的圆面积等于()。
① πr2 ② 2πr2 ③πd
(6)圆的直径长度决定圆的()。
① 位置② 大小 ③ 形状
(7)圆的半径扩大3倍,它的面积就扩大()。
① 3倍 ② 6倍 ③ 9倍
(8)已知圆的周长是106.76分米,圆的半径是()。
① 17分米②8.5分米 ③ 34分米
四、应用题。
(1)一个大厅里挂有一只大钟,它的分针长40厘米。这根分针的针尖1天转动多少厘米?
(2)一个大厅里挂有一只大钟,它的时针长35厘米。这根时针的针尖1天转动多少厘米?
(3)小明骑的自行车车轮直径是70厘米,每分钟转100周,从家到学校有1300米,小明大约要骑几分钟?(得数保留整数)
(4)一个农民新开挖一个圆形水池,水池的周长是50.24米,求水池占地的面积是多少平方米?
(5)一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。剩下的面积是多少平方厘米?
(6)一个环形铁片,内圆半径是8厘米,外圆半径是10厘米,这个环形铁片的面积是多少?
(7)公园里有一个圆形花坛,周长50.24米,在它的周围有一条宽1米的小路,小路的面积是多少平方米?
(8)学校操场(如左图,单位:米),操场的周长是多少米?面积是多少平方米?
小学数学六年级(上册)圆测试题 (上)
一、填空
1、( )决定圆的大小,( )决定圆的位置。
2、圆是( )图形,它有( )条对称轴,( )是圆的对称轴,
3、( )是圆中最长的线段。
4、一个圆周长扩大4倍,半径扩大( )倍,直径扩大()倍,面积扩大()倍。
5、大圆的半径等于小圆的直径,那么大圆的面积是小圆面积的( )倍。
6、圆的周长公式是( )或( ),圆的面积公式是( ),半圆形的周长公式( ),圆周长的一半公式是( )
7、周长相等的长方形,正方形,圆。( )的面积最大,()的面积最小。
8、π,3.14,3.1414,0.314,31.4,从小到大排列是()。
9、圆的周长总是直径()倍,是半径的( )倍。
10、画出一个圆的周长是18.84厘米,那么圆规两脚间的距离是( )。
11、在同一个圆里,直径和半径的关系用字母表示是()。
12、一个半圆,半径是r,它的周长是( )。
二、判断
1、直径是半径的2倍。
2、两端都在圆上的线段,叫半径。
3、半径是2厘米的圆周长和面积相等。
4、将一个圆通过切拼,转化成一个长方形,面积和周长没有变化。
5、如果圆的直径是d,它的面积是 πd2 。
6、圆周率就是3.14
7、半圆形的周长就是圆周长的一半。
8、直径是圆的对称轴。
9、一个圆的面积和一个正方形的面积相等,它们的周长也相等
10、半圆形的面积就是圆面积的一半
三、应用
1、 一个圆形水池,直径是20米,在水池周围围一圈栅栏,再在水池外围修一条宽4米的环形小路。
(1)、栅栏的长度是多少?
(2)、这条小路的面积是多少?
2、 一根12.96 米的绳子,绕树10圈还长0.4米,树干横截面的面积是多少?
3、一辆自行车轮胎外直径是80厘米,如果平均每分钟转动200圈,它要通过一座长1500米的桥,大约需要多少分钟?(得数保留整数)
4、一张长方形纸片,长4厘米,宽2厘米,要用它剪一个最大的半圆,这个半圆面积是多少,周长是多少,剩下的纸片的周长是多少?面积是多少?
5、 一个圆的周长是6280米,半径增加1厘米,面积增加了多少平米?
6、 一只挂钟的时针长8厘米,针尖一昼夜走过的路程是多少厘米?
7、 一只挂钟的分针长8厘米,针尖一昼夜走过的路程是多少厘米?扫过的面积是多少?
8、 一只挂钟的分针长8厘米,经过15分钟分针走过的路程是多少?扫过的面积是多少?
9、 一只挂钟的分针长8厘米,从2时到5时,分针尖端走过的路程是多少?
10一个半圆的周长是10.28厘米,这个半圆的半径是多少,面积是多少?
11、 一台压路机前轮直径是10分米,长是15分米,这台压路机的前轮滚动一圈,压过的路长是多少?压过路面的面积是多少米?
12、一座圆形游泳池,刘星沿着游泳池走了一圈,一共是628步,他每步的长约是0.6米。这个游泳池占地面积是多少?
圆的面积教案 篇4
教学目标
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重、难点:圆面积公式的推导与运用。
学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。边长等于r正方形透明塑料片
教学过程
一、设疑导入,激发动机
1.请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。
2.引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的面积)
3.引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。
二、动手操作,探索新知
1.猜想、引导,确定方法
师:我们曾运用转化法探索出了平行四边形、三角形、梯形面积的计算公式,相信同学们也一定能把圆转化为学过的图形,从而探索出圆面积的计算方法。同学们猜想一下,圆可能转化为哪些平面图形呢?
(学生可能会想到长方形、平行四边形、三角形、梯形等。)
师:请同学们看手中的学具,想一想把圆怎样剪?剪成什么样的图形?
(根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。)
2.动手操作,尝试探究
师请同学们动手剪拼一下,看到底能拼成什么图形。
(学生动手操作,小组合作探究)
师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。(各小组汇报,共享思维成果)
3.课件演示,突破难点
师课件演示,再现将圆16等份转化成近似的长方形的过程;再将圆32等份转化成近似的长方形的过程。引导思考:
(1)圆与有近似的长方形有什么关系?
(2)把圆16等份和32等份后,拼成的图形有什么区别?
(3)如果等分份数仅需增加,结果会怎样?
师:课件进一步演示把一个圆等分成64份、128份…拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。
4.观察比较,导出公式
师:请各小组仔细观察思考:拼成的长方形与圆有什么联系?能从中推导出圆的面积计算公式吗?
学生汇报讨论结果。使学生明确:拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径,也就是S=πr×r=πr2
(可能有的同学会把圆剪开后拼成了平行四边形、三角形或梯形。教师要给予肯定,并引导推出同样的计算公式。)
5.尝试运用
出示例3,读题列式,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
2.完成第116页做一做的第1题。
3.看书质疑。
三、运用新知,解决问题
1.求下面各圆的面积,只列式不计算。
直径50分米
2.一块圆形铁板的半径是3分米,它的面积是多少平方分米?
3.小明家购买一种麦田的自动旋转喷灌装置的射程是15米。请你帮忙算一算,它能喷灌的面积有多少平方米?
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、课堂作业
第118页的第3题和第4题。